Rescaling the Human Footprint: A tool for conservation planning at an ecoregional scale

生态区 足迹 比例(比率) 环境科学 环境资源管理 遥感 地理 自然地理学 地图学 生态学 考古 生物
作者
Gillian Woolmer,Stephen C. Trombulak,Justina C. Ray,Patrick J. Doran,Mark Anderson,Robert F. Baldwin,Alexis Morgan,Eric W. Sanderson
出处
期刊:Landscape and Urban Planning [Elsevier BV]
卷期号:87 (1): 42-53 被引量:157
标识
DOI:10.1016/j.landurbplan.2008.04.005
摘要

Measuring and mapping human influence at the global scale suffers from problems of accuracy and resolution. To evaluate the magnitude of this problem we mapped the Human Footprint (HF) for the Northern Appalachian/Acadian ecoregion at a 90-m resolution using best available data on human settlement, access, land use change, and electrical power infrastructure. Such a map measures the magnitude of human transformation of a landscape, scaled between Human Footprint scores of 0 and 100. Comparison with a 1-km resolution Global Human Footprint map revealed similar spatial patterns of human influence. The correlation between HF scores, however, declined with the size of the area compared, with the rank correlation between ecoregional and global HF scores ranging between 0.67 for 100% of the ecoregion and 0.41 for 0.1% of the ecoregion. This indicates that rescaling the map to a finer resolution leads to improvements that increase as the planning area becomes smaller. The map reveals that 46% of the ecoregion has HF ≤ 20 (compared to 59% in the global analysis) and 34% had HF > 40 (compared to 21% in the global analysis). These results demonstrate the benefit of performing region-scale Human Footprint mapping to support conservation-based land use planning at the ecoregional to the local scale. This exercise also provides a data framework with which to model regionally plausible Future Human Footprint scenarios. These and other benefits of producing a regional-scale Human Footprint must be carefully weighed against the costs involved, in light of the region's conservation planning needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞跃海龙完成签到 ,获得积分10
1秒前
1秒前
离个大谱发布了新的文献求助10
1秒前
毛77发布了新的文献求助10
2秒前
科研助手6应助ccc12306采纳,获得10
2秒前
2秒前
樊舒豪发布了新的文献求助10
2秒前
田様应助周钰波采纳,获得10
3秒前
mumu发布了新的文献求助10
3秒前
左丘冥发布了新的文献求助10
3秒前
Rong完成签到,获得积分10
5秒前
5秒前
胡小溪发布了新的文献求助10
6秒前
科研通AI5应助大方荷花采纳,获得10
6秒前
wjm完成签到,获得积分10
6秒前
8秒前
科研通AI2S应助彩色的过客采纳,获得10
8秒前
自然代亦发布了新的文献求助10
8秒前
Ava应助贪玩的热狗采纳,获得10
9秒前
10秒前
123发布了新的文献求助10
11秒前
YY发布了新的文献求助20
11秒前
journey完成签到 ,获得积分10
12秒前
小开完成签到,获得积分10
12秒前
13秒前
13秒前
挤你太美发布了新的文献求助30
14秒前
net80yhm完成签到,获得积分10
16秒前
离子电池完成签到,获得积分10
17秒前
17秒前
周钰波发布了新的文献求助10
18秒前
Bob发布了新的文献求助10
19秒前
21秒前
挤你太美完成签到,获得积分20
21秒前
优美灵波发布了新的文献求助10
22秒前
蓝岳洋完成签到,获得积分20
24秒前
Wanderer完成签到 ,获得积分10
24秒前
水三寿完成签到,获得积分20
24秒前
YY发布了新的文献求助10
26秒前
孙燕应助Cetus采纳,获得10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838348
求助须知:如何正确求助?哪些是违规求助? 3380617
关于积分的说明 10515331
捐赠科研通 3100241
什么是DOI,文献DOI怎么找? 1707392
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772890