Dynamic Deformation Measurement of an Intact Single Cell via Microfluidic Chip with Integrated Liquid Exchange

微流控 渗透压 材料科学 微流控芯片 层流 渗透性休克 生物物理学 化学 纳米技术 机械 生物化学 物理 生物 基因
作者
Xu Du,Di Chang,Shingo Kaneko,Hisataka Maruyama,Hirotaka Sugiura,Masaru Tsujii,Nobuyuki Uozumi,Fumihito Arai
出处
期刊:Engineering [Elsevier BV]
卷期号:24: 94-101 被引量:4
标识
DOI:10.1016/j.eng.2022.08.020
摘要

This paper reports a method to measure the mechanical properties of a single cell using a microfluidic chip with integrated force sensing and a liquid exchange function. A single cell is manipulated and positioned between a pushing probe and a force sensor probe using optical tweezers. These two on-chip probes were designed to capture and deform the cells. The single cell is deformed by moving the pushing probe, which is driven by an external force. The liquid–liquid interface is formed between the probes by laminar flow to change the extracellular environment. The position of the interface is shifted by controlling the injection pressure. Two positive pressures and one negative pressure are adjusted to balance the diffusion and perturbation of the flow. The mechanical properties of a single Synechocystis sp. strain PCC 6803 were measured in different osmotic concentration environments in the microfluidic chip. The liquid exchange was achieved in approximately 0.3–0.7 s, and the dynamic deformation of a single cell was revealed simultaneously. Measurements of two Young's modulus values under alterable osmotic concentrations and the dynamic response of a single cell in osmotic shock can be collected within 30 s. Dynamic deformations of wild-type (WT) and mutant Synechocystis cells were investigated to reveal the functional mechanism of mechanosensitive (MS) channels. This system provides a novel method for monitoring the real-time mechanical dynamics of a single intact cell in response to rapid external osmotic changes; thus, it opens up novel opportunities for characterizing the accurate physiological function of MS channels in cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助研友_89Nm7L采纳,获得10
刚刚
哈哈哈发布了新的文献求助10
1秒前
3秒前
小马甲应助tuckahoe采纳,获得10
4秒前
rachel03发布了新的文献求助10
4秒前
5秒前
肉肉完成签到 ,获得积分10
5秒前
6秒前
李俊枫发布了新的文献求助10
6秒前
6秒前
6秒前
WML完成签到,获得积分10
6秒前
小二郎应助无奈的小松鼠采纳,获得10
8秒前
Ava应助无奈的小松鼠采纳,获得10
8秒前
Hello应助无奈的小松鼠采纳,获得10
8秒前
8秒前
8秒前
慕青应助无奈的小松鼠采纳,获得10
8秒前
8秒前
火如云发布了新的文献求助10
8秒前
FashionBoy应助无奈的小松鼠采纳,获得10
8秒前
传奇3应助无奈的小松鼠采纳,获得10
8秒前
8秒前
坚定的海露完成签到,获得积分10
9秒前
侠医2012完成签到,获得积分0
9秒前
斯文败类应助yyymmma采纳,获得10
10秒前
清图完成签到,获得积分10
11秒前
惊蛰完成签到,获得积分10
12秒前
安详书蝶发布了新的文献求助10
12秒前
fuws发布了新的文献求助10
12秒前
芬芬发布了新的文献求助10
12秒前
欢呼篮球完成签到,获得积分20
13秒前
共享精神应助遮宁采纳,获得10
16秒前
陆未离完成签到 ,获得积分10
17秒前
rayzhanghl完成签到,获得积分10
17秒前
张叮当完成签到,获得积分10
18秒前
完美的书雁完成签到 ,获得积分10
18秒前
啊哈哈完成签到 ,获得积分10
19秒前
CarryZ8完成签到,获得积分10
19秒前
虚幻的凤完成签到,获得积分10
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801363
求助须知:如何正确求助?哪些是违规求助? 3347034
关于积分的说明 10331558
捐赠科研通 3063311
什么是DOI,文献DOI怎么找? 1681497
邀请新用户注册赠送积分活动 807616
科研通“疑难数据库(出版商)”最低求助积分说明 763810