Assessment of Different Feature Extraction Methods for Discriminating Expressed Emotions during Music Performance towards BCMI Application

脑电图 计算机科学 支持向量机 特征提取 人工智能 语音识别 模式识别(心理学) 特征选择 价(化学) 背景(考古学) 连贯性(哲学赌博策略) 唤醒 特征(语言学) 心理学 数学 统计 古生物学 语言学 生物 物理 哲学 量子力学 精神科 神经科学
作者
Mahrad Ghodousi,Jachin Edward Pousson,Valdis Bernhofs,Inga Griškova-Bulanova
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (4): 2252-2252 被引量:1
标识
DOI:10.3390/s23042252
摘要

A Brain-Computer Music Interface (BCMI) system may be designed to harness electroencephalography (EEG) signals for control over musical outputs in the context of emotionally expressive performance. To develop a real-time BCMI system, accurate and computationally efficient emotional biomarkers should first be identified. In the current study, we evaluated the ability of various features to discriminate between emotions expressed during music performance with the aim of developing a BCMI system. EEG data was recorded while subjects performed simple piano music with contrasting emotional cues and rated their success in communicating the intended emotion. Power spectra and connectivity features (Magnitude Square Coherence (MSC) and Granger Causality (GC)) were extracted from the signals. Two different approaches of feature selection were used to assess the contribution of neutral baselines in detection accuracies; 1- utilizing the baselines to normalize the features, 2- not taking them into account (non-normalized features). Finally, the Support Vector Machine (SVM) has been used to evaluate and compare the capability of various features for emotion detection. Best detection accuracies were obtained from the non-normalized MSC-based features equal to 85.57 ± 2.34, 84.93 ± 1.67, and 87.16 ± 0.55 for arousal, valence, and emotional conditions respectively, while the power-based features had the lowest accuracies. Both connectivity features show acceptable accuracy while requiring short processing time and thus are potential candidates for the development of a real-time BCMI system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugh完成签到,获得积分10
3秒前
正直的魔镜完成签到 ,获得积分10
3秒前
白白完成签到 ,获得积分10
3秒前
qinqin发布了新的文献求助10
4秒前
专注的秀完成签到,获得积分10
5秒前
yu完成签到 ,获得积分10
5秒前
木目完成签到 ,获得积分10
5秒前
sptyzl完成签到 ,获得积分10
6秒前
大气乐儿完成签到,获得积分10
6秒前
meijuan1210完成签到,获得积分10
6秒前
zyc1111111发布了新的文献求助20
7秒前
baitaowl完成签到 ,获得积分10
8秒前
Jj完成签到,获得积分10
9秒前
自有龙骧完成签到 ,获得积分10
10秒前
小二郎应助派大星采纳,获得10
12秒前
博修完成签到,获得积分10
13秒前
Dasha完成签到,获得积分10
14秒前
zh应助EnnoEven采纳,获得40
14秒前
14秒前
KaiZI完成签到 ,获得积分10
16秒前
17秒前
zyc1111111发布了新的文献求助20
18秒前
丰富的大地完成签到,获得积分10
18秒前
打水不打饭完成签到 ,获得积分10
20秒前
20秒前
康康完成签到,获得积分10
21秒前
23秒前
派大星发布了新的文献求助10
24秒前
科研通AI5应助xxz采纳,获得10
27秒前
宁宁完成签到,获得积分10
27秒前
EnnoEven完成签到,获得积分10
27秒前
科研通AI2S应助小绵羊采纳,获得10
29秒前
danna应助小绵羊采纳,获得10
29秒前
zlx完成签到,获得积分10
30秒前
Chem34完成签到,获得积分10
30秒前
32秒前
CodeCraft应助现代的战斗机采纳,获得10
34秒前
桐桐应助洁净的惜筠采纳,获得10
34秒前
饱满跳跳糖给饱满跳跳糖的求助进行了留言
35秒前
grs完成签到,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308