Phenotypic Selectivity of Artificial Intelligence-enhanced Electrocardiography in Cardiovascular Diagnosis and Risk Prediction

医学 逻辑回归 内科学 心脏病学 左心室肥大 心电图 队列 表型 血压 生物化学 基因 化学
作者
Philip M. Croon,Lovedeep Singh Dhingra,Dhruva Biswas,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:Circulation [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circulationaha.125.076279
摘要

Background: Artificial intelligence (AI)-enhanced electrocardiogram (ECG) models are often designed to detect specific anatomical and functional cardiac abnormalities. Understanding the selectivity of their phenotypic associations is essential to inform their clinical use. Here, we sought to assess whether AI-ECG models function as condition-specific classifiers or broader cardiovascular risk markers. Methods: We included four distinct study populations, drawn from both electronic health records (EHR) and prospective cohort studies. We deployed six image-based AI-ECG models, including five validated models for the detection of left ventricular systolic dysfunction (LVSD), aortic stenosis (AS), mitral regurgitation (MR), left ventricular hypertrophy (LVH), a composite model for structural heart disease (SHD), and a negative control AI-ECG model for biological sex. Additionally, we developed six experimental models designed to identify non-cardiovascular conditions. Diagnosis codes from EHR and cohorts were transformed into interpretable phenotypes using a phenome-wide association study (PheWAS) framework. We assessed associations of AI-ECG probabilities with cross-sectional phenotypes using logistic regression, and with new-onset cardiovascular diseases using Cox regression. Pearson correlation coefficients were calculated to compare phenotypic signatures. Results: The study included one random ECG from 233,689 individuals (mean age 59±18 years, 130,084 [56%] women) across sites. Each of the five AI-ECG models was more likely to be associated with cardiovascular phenotypes compared with other phenotype groups (odds ratios ranging from 2.16 to 4.41, p<10 ⁻⁶ ), whereas the sex model did not show a similar pattern. All AI-ECG models were significantly associated with their respective target phenotype but also showed similar or stronger associations with a broad range of other cardiovascular phenotypes. Phenotypic associations were similar across AI-ECG models trained for different conditions, which was not observed in models for non-cardiovascular conditions. Correlation of phenotype association patterns between models was high (0.67 to 0.96). This pattern was consistent across all models, external datasets, and in both cross-sectional and prospective analyses. Conclusions: Despite being developed to detect specific cardiovascular conditions, AI-ECG models detect the presence and predict the future development of a broad range of cardiovascular diseases with similar propensity. This challenges their role as binary diagnostic tools and instead supports their use as broader cardiovascular biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助guojingjing采纳,获得10
2秒前
烟花应助omennnm采纳,获得30
4秒前
5秒前
小二郎应助maclogos采纳,获得10
5秒前
ahq完成签到,获得积分10
6秒前
6秒前
ann关注了科研通微信公众号
7秒前
7秒前
7秒前
官官发布了新的文献求助10
9秒前
迷你的无剑完成签到 ,获得积分10
9秒前
辰溪完成签到,获得积分10
9秒前
10秒前
稳重飞飞完成签到,获得积分10
10秒前
10秒前
知返发布了新的文献求助10
10秒前
11秒前
12秒前
田様应助bo采纳,获得10
12秒前
LGS发布了新的文献求助10
12秒前
容容容发布了新的文献求助10
12秒前
13秒前
Ava应助扶桑采纳,获得10
14秒前
ahq发布了新的文献求助10
15秒前
15秒前
xx完成签到 ,获得积分10
16秒前
辰溪发布了新的文献求助10
16秒前
任性映秋完成签到,获得积分10
17秒前
刻苦的丹妗完成签到,获得积分10
17秒前
18秒前
YUZI完成签到,获得积分20
18秒前
Owen应助奢侈的温馨问候采纳,获得10
19秒前
20秒前
Hello应助典雅的芷波采纳,获得10
20秒前
duck0008完成签到,获得积分10
21秒前
22秒前
22秒前
爆米花应助shkknx采纳,获得10
24秒前
24秒前
科研通AI5应助LGS采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228