材料科学
相间
对偶(语法数字)
电解质
钠
金属
聚合物
化学工程
配位聚合物
纳米技术
无机化学
复合材料
冶金
电极
物理化学
化学
艺术
工程类
文学类
生物
遗传学
作者
Haonan Zheng,Hangjun Ying,Chaowei He,Lucheng Cai,Yijing Zhou,Mengya Wang,F. Liu,Xudong Gao,Qinglong Zhao,Wei‐Qiang Han
标识
DOI:10.1002/adfm.202520179
摘要
Abstract All‐solid‐state sodium metal batteries (ASSMBs) represent promising energy storage technologies owing to their high energy density and safety. However, electrode/electrolyte interfacial issues severely hinder high‐voltage ASSMB applications. Herein, the concept of anion receptor competitive coordination (ARCC) and a poly(ethylene oxide) (PEO) electrolyte (PFCE) containing sodium fluorophosphate (Na 2 FPO 3 ) is designed. This approach reveals the intrinsic correlation between the local coordination structure of PEO and high‐voltage interfacial stability, and achieves stable Na metal interfaces through electronic orbital modulation. Theoretical calculations and experiments demonstrate that strong ion‐dipole coordination between the FPO 3 2− electrophilic centers and PEO coupled with in situ decomposition forms a robust inorganic cathode‐electrolyte interface (CEI) framework comprising NaF, Na x PO y F z , and P‐O composites. Furthermore, the Na + ‐mediated anionic delocalized orbital hybridization in PFCE creates a chemically and mechanically stable solid electrolyte interface (SEI). Based on the anion coordination‐regulated electrolyte, Na||Na cells can cycle stably for 2000 h at 0.1 mA cm −2 with low interfacial polarization of 40 mV. Furthermore, PFCE exhibits a wide electrochemical window (>5 V vs. Na + /Na) and demonstrates impressive cycling stability in 4.5 V Na|Na 3 V 2 (PO 4 ) 2 O 2 F cells, retaining 84.43% capacity after 100 cycles. The ARCC strategy provides a promising pathway toward high‐energy‐density sodium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI