化学
异构酶
基因组
非核糖体肽
计算生物学
生物化学
基因
生物合成
生物
作者
Sangwook Kang,Thanh‐Hau Huynh,Jung Min Kim,Bo Eun Heo,Sung Chul Jang,Chae Won Ock,Jayho Lee,Yejin Song,Joon Soo An,Ben Shen,Seung Bum Kim,Jichan Jang,Sang Kook Lee,Yeo Joon Yoon,Dong‐Chan Oh
摘要
A targeted method for discovering cinnamoyl-containing nonribosomal peptides (CCNPs), a unique class of bioactive compounds, was devised by using cinnamoyl isomerase, a key enzyme in the biosynthesis of the cinnamoyl moiety, as a genome mining probe. A total of 39 hit strains were obtained, including 35 from polymerase chain reaction-based screening of the in-house bacterial library (2.5% of 1400 strains) targeting the cinnamoyl isomerase-encoding gene and 4 from the genome mining of online databases. Sequence similarity networking and phylogenetic analyses of the isomerase amplicons (∼530 bp) classified the CCNPs into three major substructure-based groups (Z-, E-, and M-type CCNPs) and revealed distinct clade-structure relationships (13 clades). To overcome the challenge of silent biosynthetic gene clusters, we activated these clusters by overexpressing conserved cluster-situated LuxR regulators combined with extensive culture optimization. CCNP production was metabolomically detected in the bacterial extracts by using the characteristic UV absorption and MS/MS fragments of cinnamoyl moieties. CCNP production was observed in 20 of the 39 hit strains, resulting in the isolation of 6 new CCNPs, including oxy-skyllamycin B (2), gwanacinnamycin (3), and luxocinnamycins A-D (4-7), with high structural novelty. Their structures were elucidated using comprehensive spectroscopic analyses and multiple-step chemical derivatizations, and the putative biosynthetic pathways were bioinformatically proposed. Gwanacinnamycin (3) exhibited significant antimycobacterial activity, whereas luxocinnamycin A (4) displayed moderate antiproliferative activity against stomach cancer cells. Our findings highlight a targeted metabologenomic approach combined with transcriptional regulator overexpression as a logical and efficient platform for the discovery of bioactive compounds from nature.
科研通智能强力驱动
Strongly Powered by AbleSci AI