Breeding perspectives on tackling trait genome-to-phenome (G2P) dimensionality using ensemble-based genomic prediction

现象 特质 遗传建筑学 数量性状位点 选择(遗传算法) 基因组选择 生物 基因组学 维数之咒 基因组 计算生物学 计算机科学 机器学习 人工智能 遗传学 基因 基因型 单核苷酸多态性 程序设计语言
作者
Mark Cooper,Shunichiro Tomura,Melanie J. Wilkinson,Owen Powell,Carlos D. Messina
出处
期刊:Theoretical and Applied Genetics [Springer Science+Business Media]
卷期号:138 (7)
标识
DOI:10.1007/s00122-025-04960-6
摘要

Abstract Key message Trait Genome-to-Phenome (G2P) dimensionality and “breeding context” combine to influence the realised prediction skill of different whole genome prediction (WGP) methods. Theory and empirical evidence both suggest there is likely to be “No Free Lunch” for prediction-based breeding. Ensembles of diverse sets of G2P models provide a framework to expose and investigate the high G2P dimensionality of trait genetic architecture for WGP applications. Artificial Intelligence and Machine Learning (AI-ML) prediction algorithms contribute novel trait G2P model diversity to ensemble-based WGP. Prediction-based breeding leveraging ensembles of G2P models creates new opportunities to identify and design novel paths for genetic gain. Abstract Improving our understanding of trait genetic architecture is motivated by creating new opportunities to enhance breeding methodology, create new selection trajectories for crop improvement, and accelerate rates of genetic gain. With access to high-throughput sequencing, phenotyping and envirotyping technologies we can model the complex multidimensional relationships between sequence variation and trait phenotypic variation that are under the influences of selection. Using the framework of the diversity prediction theorem, we consider applications of ensembles of diverse trait genome-to-phenome (G2P) models. Crop growth models (CGM) are an example of a hierarchical framework for studying the influences of quantitative trait loci (QTL) within trait networks and their interactions with different environments to determine yield. Hybrid CGM-G2P models combine elements of CGMs, to understand how trait networks influence crop yield performance, with trait G2P models, to understand influences of trait genetic architecture on selection trajectories. We discuss hybrid CGM-G2P models and their potential applications to enhance ensemble-based prediction. Multi-environment trials conducted across breeding cycles can be designed to include contrasting environments to expose the different CGM-G2P dimensions of the trait by environment interactions that are influential on selection trajectories. Artificial intelligence and machine learning (AI-ML) algorithms can be applied as components of ensembles to improve gene discovery and quantification of allele effects for traits to enhance G2P prediction applications. We use the trait flowering time in the maize TeoNAM experiment to illustrate and motivate further investigations of how to leverage ensembles of G2P models for prediction-based breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ben发布了新的文献求助10
3秒前
程负暄完成签到 ,获得积分10
13秒前
美丽心情完成签到,获得积分10
19秒前
泡泡茶壶o完成签到 ,获得积分10
21秒前
南风完成签到 ,获得积分10
23秒前
丑小鸭完成签到 ,获得积分10
23秒前
下文献的蜉蝣完成签到 ,获得积分10
23秒前
mama完成签到 ,获得积分10
38秒前
凶狠的储完成签到,获得积分10
40秒前
提莫silence完成签到 ,获得积分0
44秒前
yellowonion完成签到 ,获得积分10
45秒前
nan完成签到,获得积分10
47秒前
kenchilie完成签到 ,获得积分10
47秒前
Lyw完成签到 ,获得积分10
52秒前
胡图图完成签到 ,获得积分10
57秒前
ymxlcfc完成签到 ,获得积分10
1分钟前
大可完成签到 ,获得积分10
1分钟前
林好人发布了新的文献求助10
1分钟前
沉默的婴完成签到 ,获得积分10
1分钟前
Raymond完成签到,获得积分10
1分钟前
lilylian完成签到,获得积分10
1分钟前
xiaoblue完成签到,获得积分10
1分钟前
充电宝应助Sunny采纳,获得10
1分钟前
寂寞致幻完成签到,获得积分10
1分钟前
桃子完成签到 ,获得积分10
1分钟前
3927456843应助科研通管家采纳,获得20
1分钟前
3927456843应助科研通管家采纳,获得20
1分钟前
1分钟前
称心的高丽完成签到 ,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
Sunny发布了新的文献求助10
1分钟前
CipherSage应助寂寞致幻采纳,获得10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
rover完成签到 ,获得积分10
1分钟前
1分钟前
kyle完成签到 ,获得积分10
2分钟前
雪白溪流完成签到 ,获得积分10
2分钟前
花落无声完成签到 ,获得积分10
2分钟前
似风完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774303
求助须知:如何正确求助?哪些是违规求助? 4107307
关于积分的说明 12704885
捐赠科研通 3828099
什么是DOI,文献DOI怎么找? 2111924
邀请新用户注册赠送积分活动 1135871
关于科研通互助平台的介绍 1019314