自愈水凝胶
聚丙烯酰胺
氢键
材料科学
海藻糖
化学工程
大气温度范围
离子
氢
重组
化学
纳米技术
高分子化学
分子
有机化学
业务
工程类
财务
气象学
物理
作者
Lingmei Wang,Huicai Wang,Junlun Cao,Jicheng Yan,Chuanxian Dai,Wuzhu Sun,Qingyang Du,Huang Zhi-qiang,Dan Liu,Chao Li,Jingyu Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-07-27
卷期号:19 (31): 28397-28409
被引量:4
标识
DOI:10.1021/acsnano.5c06805
摘要
Aqueous Zn-ion batteries utilizing moldable gel electrolytes are expected to meet power requirements for wearable devices because of their inherent safety and energy output. Nevertheless, comprehensive modulation over the mechanical robustness, water retention capability, and electrode-electrolyte interface stability remains at a nascent stage. Drawing inspiration from the naturally cryoprotective and hygroscopic properties of trehalose, we herein devise a strategy by incorporating trehalose into polyacrylamide hydrogel electrolytes, targeting the construction of wearable Zn-ion batteries. The optimized hydrogel electrolyte demonstrates low-temperature adaptability (-15 °C), high-temperature stability (50 °C), and water retention capability while helping to suppress dendrite growth and parasitic reactions. Theoretical calculations and electrochemical characterizations reveal that trehalose modifies the Zn-ion solvation structure and optimizes the electrode-electrolyte interface. The thus-fabricated Zn-ion batteries exhibit favorable electrochemical performances in a wide-temperature range, achieving a capacity retention of 87.2% after 2000 cycles at 5 A g-1. The assembled pouch cell could also be sustained for more than 500 cycles. Moreover, the integration of our Zn-ion batteries with Si solar cells to construct a wearable solar-charging system enables an energy conversion efficiency exceeding 10%.
科研通智能强力驱动
Strongly Powered by AbleSci AI