琥珀酸脱氢酶
脱氢酶
癌症
生物化学
代谢途径
化学
生物
酶
遗传学
作者
Adam Chatoff,Daniel S. Kantner,Nathaniel W. Snyder,Lori Rink
摘要
ABSTRACT Succinate dehydrogenase (SDH) is both Complex II in the electron transport chain (ETC) and a key metabolic enzyme in the tricarboxylic acid cycle. SDH is a heterotetrameric enzyme consisting of four subunits SDHA, SDHB, SDHC, and SDHD, all encoded in the nuclear genome. In addition, the SDH complex requires two assembly factors, SDHAF1 and SDHAF2, which are required for assembly of SDHA and SDHB onto the inner mitochondrial‐embedded subunits SDHC and SDHD. Once assembled, SDH catalyzes the conversion of succinate to fumarate coupled to the reduction of ubiquinone to ubiquinol via FAD/FADH 2 and ultimately the generation of ATP via ATP synthase through a functioning ETC. Given the unique dual metabolic role of SDH, loss of activity results in major metabolic rewiring, potentially uncovering metabolic vulnerabilities that could be targeted for pharmacological manipulation in disease states. SDH is a tumor suppressor and SDH‐loss is a driver of oncogenesis for cancers including pheochromocytomas, paragangliomas, gastrointestinal stromal tumors, and clear cell renal cell carcinomas. SDH deficiency also plays a role in the pathogenesis in non‐neoplastic diseases, including Leigh syndrome and other neurometabolic disorders. Considering the implications of SDH function in both normal physiology and disease, understanding SDH function has fundamental and translational implications. This review seeks to summarize SDH deficiency, focusing on the role SDH plays in metabolism, the metabolic consequences of SDH deficiency, the proteomic consequences of SDH loss, thereby highlight potential therapeutic vulnerabilities in SDH‐deficient cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI