膜
氧化还原
选择性
电导率
水溶液
电化学
氟
化学工程
化学
离子交换
离子
材料科学
电极
无机化学
有机化学
工程类
催化作用
生物化学
物理化学
作者
Qinshan Zhu,Linhan Ni,Kang Peng,Jiaxin Liu,Wenbo Wu,Liang Guo,Zhenwei Zhang,Fangmeng Sheng,Peipei Zuo,Tongwen Xu
标识
DOI:10.1002/anie.202510497
摘要
Abstract Ion exchange membranes constitute critical components in aqueous organic redox flow batteries (AORFBs), yet face a fundamental trade‐off. High‐ion‐affinity membranes achieve high conductivity but endure swelling‐induced low selectivity due to co‐uptake of water and organic active species. To address it, we develop a fluorine‐engineered polymer architecture strategy, demonstrated via fluorinated poly(arylene alkylene) anion exchange membranes. Fluorine incorporation 1) establishes interconnected ion channels with suppressed swelling, enabling competitive conductivity at low hydration ( λ < 4.5), and 2) simultaneously reduces redox‐active material affinity, yielding low permeabilities of, for example, 4.0 × 10 −12 cm 2 s −1 for methyl viologen, representing 50‐fold and 425‐fold lower permeability than those of fluorine‐free counterpart and commercial DSV membranes, respectively. The optimized membrane enables a pH‐neutral AORFB exhibiting a low‐capacity decay rate (0.00077% per cycle)–outperforming existing systems by 1–3 orders of magnitude. Our observations provide fundamental guidance for developing advanced membranes in electrochemical energy technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI