Using transformers for multimodal emotion recognition: Taxonomies and state of the art review

计算机科学 变压器 情绪识别 语音识别 人机交互 人工智能 电气工程 电压 工程类
作者
Samira Hazmoune,Fateh Bougamouza
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108339-108339 被引量:19
标识
DOI:10.1016/j.engappai.2024.108339
摘要

Emotion recognition is an aspect of human-computer interaction, affective computing, and social robotics. Conventional unimodal approaches for emotion recognition, depending on single data sources such as facial expressions or speech signals often fall short in capturing the complexity and context-dependent nature of emotions. Multimodal Emotion Recognition (MER), which integrates information from multiple modalities, has emerged as a promising solution to overcome these limitations. In recent years, Transformers-based approaches have gathered significant attention in the fields of natural language processing and computer vision, highlighting their ability to capture long-range dependencies and semantic representations. These models have rapidly achieved the MER state-of-the-art. However, current survey papers that cover MER lack a specific focus on Transformer-based techniques. To bridge this research gap, this review paper provides a comprehensive investigation of Transformers-based approaches for MER. It explores various Transformer architectures and proposes several scenarios for using Transformers at different stages of MER process. In addition, it examines datasets suitable for MER, discusses fusion mechanisms, and introduces novel taxonomies in both MER and Transformer technologies. The review also addresses challenges and future research directions. Through this review, we aim to provide researchers with an inclusive understanding of the current state-of-the-art in Transformers-based approaches for MER, paving the way for further advancements in this rapidly developing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不包含特殊字符完成签到,获得积分10
刚刚
纪靖雁完成签到 ,获得积分10
1秒前
King强完成签到,获得积分10
1秒前
hjdmkvm完成签到,获得积分10
1秒前
1秒前
核桃应助Aventen采纳,获得10
2秒前
无理取闹完成签到,获得积分10
2秒前
彭于晏应助刘二狗采纳,获得10
2秒前
AhhHuang应助踏实奄采纳,获得10
3秒前
gjm发布了新的文献求助10
3秒前
小二郎应助zpz采纳,获得10
3秒前
阿拉斯加完成签到,获得积分10
4秒前
阳佟元芹发布了新的文献求助20
4秒前
Akim应助wangli采纳,获得10
4秒前
甜甜芾完成签到,获得积分10
4秒前
5秒前
zxh发布了新的文献求助10
5秒前
5秒前
YuJiao发布了新的文献求助20
5秒前
6秒前
6秒前
核桃发布了新的文献求助10
6秒前
7秒前
甜甜甜圈完成签到,获得积分10
7秒前
小二郎应助pengGuo采纳,获得10
8秒前
9秒前
愤怒的豌豆完成签到,获得积分10
10秒前
風起天岚发布了新的文献求助10
10秒前
11秒前
1111发布了新的文献求助10
11秒前
11秒前
无敌的番茄炒蛋完成签到,获得积分0
12秒前
神勇中道完成签到,获得积分10
12秒前
NexusExplorer应助zxh采纳,获得10
12秒前
枫老板完成签到,获得积分10
13秒前
beiyangtidu发布了新的文献求助30
13秒前
14秒前
居然发布了新的文献求助10
14秒前
14秒前
良辰应助6666采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065