A comprehensive overview of core modules in visual SLAM framework

同时定位和映射 芯(光纤) 计算机科学 方向(向量空间) 人工智能 钥匙(锁) 职位(财务) 姿势 计算机视觉 机器人 移动机器人 数学 计算机安全 电信 几何学 财务 经济
作者
Dupeng Cai,Ruoqing Li,Zhuhua Hu,Junlin Lu,Shijiang Li,Yaochi Zhao
出处
期刊:Neurocomputing [Elsevier]
卷期号:590: 127760-127760 被引量:46
标识
DOI:10.1016/j.neucom.2024.127760
摘要

Visual Simultaneous Localization and Mapping (VSLAM) technology has become a key technology in autonomous driving and robot navigation. Relying on camera sensors, VSLAM can provide a richer and more precise perception means, and its advancement has accelerated in recent years. However, current review studies are often limited to in-depth analysis of a specific module and lack a comprehensive review of the entire VSLAM framework. The VSLAM system consists of five core components: (1) The camera sensor module is responsible for capturing visual information about the surrounding environment. (2) The front-end module uses image data to roughly estimate the camera's position and orientation. (3) The back-end module optimizes and processes the pose information estimated by the front-end. (4) The loop detection module is used to correct accumulated errors in the system. (5) The mapping module is responsible for generating environmental maps. This review provides a systematic and comprehensive analysis of the SLAM framework by taking the core components of VSLAM as the entry point. Deep learning brings new development opportunities for VSLAM, but it still needs to solve the problems of data dependence, cost and real-time in practical application. We deeply explore the challenges of combining VSLAM with deep learning and feasible solutions. This review provides a valuable reference for the development of VSLAM. This will help push VSLAM technology to become smarter and more efficient. Thus, it can better meet the needs of future intelligent autonomous systems in multiple fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
bjl完成签到 ,获得积分10
刚刚
完美世界应助童童采纳,获得10
1秒前
Wait发布了新的文献求助10
1秒前
可爱的函函应助整齐乐荷采纳,获得10
4秒前
4秒前
5秒前
LJHUA完成签到,获得积分10
6秒前
7秒前
Zhang发布了新的文献求助150
10秒前
养叶子发布了新的文献求助10
10秒前
joo发布了新的文献求助10
10秒前
鹏鹏完成签到,获得积分10
12秒前
冬柳发布了新的文献求助10
12秒前
zhang发布了新的文献求助10
13秒前
14秒前
虚心求学完成签到,获得积分10
14秒前
朴素的萝卜完成签到 ,获得积分20
14秒前
脑洞疼应助zhouleiwang采纳,获得10
15秒前
18秒前
共享精神应助cc采纳,获得10
18秒前
童童发布了新的文献求助10
19秒前
19秒前
科研通AI6应助秋水采纳,获得10
20秒前
桐桐应助xxw采纳,获得10
21秒前
852应助xxw采纳,获得10
21秒前
香蕉觅云应助xxw采纳,获得10
21秒前
21秒前
汉堡包应助xxw采纳,获得10
21秒前
vv完成签到 ,获得积分10
21秒前
包容的跳跳糖完成签到,获得积分10
21秒前
orixero应助xxw采纳,获得10
21秒前
NexusExplorer应助xxw采纳,获得10
21秒前
善学以致用应助xxw采纳,获得10
21秒前
香蕉觅云应助xxw采纳,获得10
21秒前
Akim应助xxw采纳,获得10
21秒前
斯文败类应助xxw采纳,获得10
21秒前
25秒前
星辰大海应助KEHUGE采纳,获得10
26秒前
Owen应助幽默尔蓝采纳,获得10
26秒前
爆米花应助xxw采纳,获得10
27秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500750
求助须知:如何正确求助?哪些是违规求助? 4597260
关于积分的说明 14458077
捐赠科研通 4530495
什么是DOI,文献DOI怎么找? 2482801
邀请新用户注册赠送积分活动 1466554
关于科研通互助平台的介绍 1439203