对抗制
数字水印
可分离空间
失真(音乐)
人工智能
磁共振弥散成像
计算机科学
张量(固有定义)
阶段(地层学)
模式识别(心理学)
图像(数学)
算法
计算机视觉
稳健性(进化)
数学
地质学
纯数学
放射科
医学
数学分析
放大器
计算机网络
古生物学
带宽(计算)
磁共振成像
生物化学
化学
基因
作者
Long Zheng,Zhi Li,Zhangyu Liu,Dandan Li,Zhang Li,Hong Yue,Fei Cheng,Qin Mao,Xuekai Wei,Mingliang Zhou
标识
DOI:10.1142/s0218001424540119
摘要
Recent deep learning-based watermarking methods have achieved impressive results. However, they struggle with unknown distortions and often suffer from poor generalization, slow convergence, unstable training, and degraded visual quality in watermarked images. To address the above problems, this paper proposes a two-stage separable adversarial distortion (TSAD)-based robust watermarking algorithm for diffusion tensor imaging (DTI). The algorithm uses a noise-free end-to-end network in the first stage for learning and training DTI images. In the second stage, it fixes the watermark embedding network trained in the first stage, interacts the noise distortion network with the watermark extraction network to perform adversarial training for improving robustness. Experimental results show that our method achieves comparable or better robustness to seen distortions and better robustness to unseen distortions, along with enhanced stability, faster convergence, and improved visual quality in watermarked DTI images.
科研通智能强力驱动
Strongly Powered by AbleSci AI