The value of CT radiomics combined with deep transfer learning in predicting the nature of gallbladder polypoid lesions

医学 无线电技术 胆囊 价值(数学) 放射科 内科学 机器学习 计算机科学
作者
Shengnan Yin,Ning Ding,Yiding Ji,Zhenguo Qiao,Jianmao Yuan,Jing Chi,Long Hao Jin
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:65 (6): 554-564
标识
DOI:10.1177/02841851241245970
摘要

Background Computed tomography (CT) radiomics combined with deep transfer learning was used to identify cholesterol and adenomatous gallbladder polyps that have not been well evaluated before surgery. Purpose To investigate the potential of various machine learning models, incorporating radiomics and deep transfer learning, in predicting the nature of cholesterol and adenomatous gallbladder polyps. Material and Methods A retrospective analysis was conducted on clinical and imaging data from 100 patients with cholesterol or adenomatous polyps confirmed by surgery and pathology at our hospital between September 2015 and February 2023. Preoperative contrast-enhanced CT radiomics combined with deep learning features were utilized, and t-tests and least absolute shrinkage and selection operator (LASSO) cross-validation were employed for feature selection. Subsequently, 11 machine learning algorithms were utilized to construct prediction models, and the area under the ROC curve (AUC), accuracy, and F1 measure were used to assess model performance, which was validated in a validation group. Results The Logistic algorithm demonstrated the most effective prediction in identifying polyp properties based on 10 radiomics combined with deep learning features, achieving the highest AUC (0.85 in the validation group, 95% confidence interval = 0.68–1.0). In addition, the accuracy (0.83 in the validation group) and F1 measure (0.76 in the validation group) also indicated strong performance. Conclusion The machine learning radiomics combined with deep learning model based on enhanced CT proves valuable in predicting the characteristics of cholesterol and adenomatous gallbladder polyps. This approach provides a more reliable basis for preoperative diagnosis and treatment of these conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
堪如南完成签到,获得积分20
2秒前
bkagyin应助jilgy采纳,获得10
2秒前
3秒前
奇奇完成签到,获得积分10
4秒前
堪如南发布了新的文献求助10
5秒前
勤恳马里奥应助bad boy采纳,获得10
7秒前
zou发布了新的文献求助10
7秒前
8秒前
勤恳马里奥应助健壮听筠采纳,获得10
8秒前
向阳花小朵完成签到,获得积分10
8秒前
9秒前
bc应助堪如南采纳,获得20
12秒前
万能图书馆应助堪如南采纳,获得10
12秒前
桐桐应助纯真野狼采纳,获得10
13秒前
13秒前
栗栗栗知发布了新的文献求助10
13秒前
ZX801完成签到 ,获得积分10
14秒前
sincerely完成签到,获得积分20
16秒前
Singularity应助拼搏的人达采纳,获得10
17秒前
ape完成签到,获得积分20
17秒前
jilgy发布了新的文献求助10
18秒前
19秒前
19秒前
动听山蝶发布了新的文献求助10
20秒前
火星上的凝安完成签到,获得积分10
20秒前
wzyttxs完成签到,获得积分20
20秒前
21秒前
寒冷的凝旋完成签到,获得积分10
21秒前
YOYOYO应助上官从波采纳,获得30
22秒前
22秒前
LamChem发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
24秒前
脑洞疼应助小马sad采纳,获得10
25秒前
qwer发布了新的文献求助10
27秒前
JHM发布了新的文献求助10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783709
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239058
捐赠科研通 3044346
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759171