An application of machine learning for material crack diagnosis using nonlinear ultrasonics

非线性系统 计算机科学 材料科学 结构工程 声学 工程类 物理 量子力学
作者
J Y Lee,Sang Eon Lee,Suyeong Jin,Hoon Sohn,Jung‐Wuk Hong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:214: 111371-111371
标识
DOI:10.1016/j.ymssp.2024.111371
摘要

Crack diagnosis in non-destructive testing often requires reference data from the structure before damage or a considerable amount of response data. Also, detecting compression cracks is challenging. In this study, a machine learning-based method is proposed for diagnosing cracks in structures under compression. The method consists of convolutional neural networks (CNN) and fully connected networks (FCN). The CNN extracts features from nonlinear ultrasonic signal data, and the features determine the occurrence of fatigue cracks in a target specimen. Four types of input data are defined in accordance with the number of input frequency combinations. The performance of the proposed method is investigated using each data type to secure efficiency and accuracy in diagnosing aluminum specimens under various compression conditions. As a result, the F1 score, a measure of accuracy, of the proposed method depends on the number of input frequency combinations. The method detects high-compression cracks with high accuracy compared to the present technology specialized for compression cracks in a certain data type. A high accuracy of more than 96% is achieved with less computation time. The proposed method will provide an accurate crack diagnosis for compression cracks with reduced time and effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助哈哈哈采纳,获得30
2秒前
2秒前
4秒前
天天快乐应助tony1102采纳,获得10
4秒前
5秒前
动漫大师发布了新的文献求助10
5秒前
8秒前
8秒前
Leoniko发布了新的文献求助10
8秒前
SSS发布了新的文献求助10
8秒前
Hello应助无风采纳,获得10
9秒前
10秒前
SS小天使发布了新的文献求助10
12秒前
Lazarus_x发布了新的文献求助10
13秒前
13秒前
xuxingjie发布了新的文献求助10
13秒前
情怀应助CCYY采纳,获得30
13秒前
14秒前
migskhol发布了新的文献求助10
15秒前
16秒前
poison完成签到,获得积分10
17秒前
一一应助Giny采纳,获得10
19秒前
tony1102发布了新的文献求助10
20秒前
乐观的颦发布了新的文献求助10
22秒前
24秒前
24秒前
24秒前
大个应助zhangzhang采纳,获得10
24秒前
博修发布了新的文献求助10
27秒前
27秒前
blacksmith0完成签到,获得积分10
28秒前
29秒前
29秒前
YH发布了新的文献求助10
30秒前
CC发布了新的文献求助10
31秒前
33秒前
blacksmith0发布了新的文献求助10
33秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802268
求助须知:如何正确求助?哪些是违规求助? 3348011
关于积分的说明 10335931
捐赠科研通 3063932
什么是DOI,文献DOI怎么找? 1682313
邀请新用户注册赠送积分活动 808016
科研通“疑难数据库(出版商)”最低求助积分说明 763997