An application of machine learning for material crack diagnosis using nonlinear ultrasonics

非线性系统 计算机科学 材料科学 结构工程 声学 工程类 物理 量子力学
作者
J Y Lee,Sang Eon Lee,Suyeong Jin,Hoon Sohn,Jung‐Wuk Hong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:214: 111371-111371 被引量:5
标识
DOI:10.1016/j.ymssp.2024.111371
摘要

Crack diagnosis in non-destructive testing often requires reference data from the structure before damage or a considerable amount of response data. Also, detecting compression cracks is challenging. In this study, a machine learning-based method is proposed for diagnosing cracks in structures under compression. The method consists of convolutional neural networks (CNN) and fully connected networks (FCN). The CNN extracts features from nonlinear ultrasonic signal data, and the features determine the occurrence of fatigue cracks in a target specimen. Four types of input data are defined in accordance with the number of input frequency combinations. The performance of the proposed method is investigated using each data type to secure efficiency and accuracy in diagnosing aluminum specimens under various compression conditions. As a result, the F1 score, a measure of accuracy, of the proposed method depends on the number of input frequency combinations. The method detects high-compression cracks with high accuracy compared to the present technology specialized for compression cracks in a certain data type. A high accuracy of more than 96% is achieved with less computation time. The proposed method will provide an accurate crack diagnosis for compression cracks with reduced time and effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zz发布了新的文献求助10
刚刚
刚刚
1秒前
博观约取_奋楫笃行完成签到,获得积分10
2秒前
3秒前
叉叉完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
6秒前
科研通AI6应助zzz采纳,获得10
7秒前
7秒前
无花果应助yulin采纳,获得10
7秒前
大个应助科研菜鸟采纳,获得10
7秒前
7秒前
大模型应助笑点低忆南采纳,获得10
8秒前
8秒前
8秒前
鹿芮完成签到 ,获得积分10
9秒前
10秒前
10秒前
ASDq发布了新的文献求助10
11秒前
lijun完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
13秒前
medmh完成签到,获得积分10
13秒前
斯文败类应助细心的语蓉采纳,获得10
15秒前
15秒前
15秒前
lesfilles发布了新的文献求助10
16秒前
TIan发布了新的文献求助10
16秒前
浮游应助炙热安彤采纳,获得10
17秒前
17秒前
李拜天发布了新的文献求助10
17秒前
17秒前
彭于晏应助关于采纳,获得10
18秒前
周易发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助123Y采纳,获得10
19秒前
19秒前
温柔的傲霜完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497239
求助须知:如何正确求助?哪些是违规求助? 4594744
关于积分的说明 14446447
捐赠科研通 4527478
什么是DOI,文献DOI怎么找? 2480884
邀请新用户注册赠送积分活动 1465248
关于科研通互助平台的介绍 1437903