Engraving Polyamide Layers by In Situ Self-Etchable CaCO3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes

生物污染 反渗透 界面聚合 聚酰胺 渗透 原位聚合 纳米复合材料 化学工程 图层(电子) 材料科学 聚合 纳米技术 化学 复合材料 渗透 聚合物 工程类 生物化学 单体
作者
Long Li,Hao Guo,Lingyue Zhang,Qimao Gan,Chengzhi Wu,Siping Zhou,Lu Elfa Peng,Chuyang Y. Tang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (14): 6435-6443
标识
DOI:10.1021/acs.est.4c00164
摘要

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cqwswfl发布了新的文献求助10
3秒前
乐乐完成签到,获得积分10
4秒前
Hello应助Emma采纳,获得10
5秒前
5秒前
5秒前
5秒前
孤独的匕发布了新的文献求助10
9秒前
ylf发布了新的文献求助10
10秒前
顺利紫山发布了新的文献求助30
10秒前
12秒前
跃跃欲试完成签到,获得积分10
13秒前
852应助沈烨伟采纳,获得10
16秒前
Owen应助cqwswfl采纳,获得10
16秒前
坚强的广山应助13134采纳,获得10
16秒前
可可可可乐完成签到,获得积分10
17秒前
Chaos_Law完成签到 ,获得积分10
18秒前
陈娜娜发布了新的文献求助10
18秒前
Ambition完成签到 ,获得积分10
20秒前
TKMY完成签到,获得积分10
20秒前
奋进中的科研小菜鸟完成签到,获得积分20
20秒前
21秒前
21秒前
22秒前
小陈完成签到,获得积分10
24秒前
顺利紫山完成签到,获得积分10
26秒前
Emma发布了新的文献求助10
26秒前
Zhao发布了新的文献求助10
27秒前
27秒前
Lll完成签到,获得积分10
28秒前
端庄弼完成签到,获得积分20
29秒前
小良完成签到,获得积分10
31秒前
33秒前
33秒前
共享精神应助汪汪采纳,获得10
34秒前
34秒前
weibolizi发布了新的文献求助10
36秒前
Ava应助Emma采纳,获得10
36秒前
海风完成签到,获得积分10
37秒前
英俊的铭应助yangxt-iga采纳,获得10
37秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
india-NATO Dialogue: Addressing International Security and Regional Challenges 400
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2470479
求助须知:如何正确求助?哪些是违规求助? 2137349
关于积分的说明 5445944
捐赠科研通 1861547
什么是DOI,文献DOI怎么找? 925776
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495218