已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Carbon emission accounting and spatial distribution of industrial entities in Beijing—Combining nighttime light data and urban functional areas

北京 环境科学 空间分布 碳纤维 分布(数学) 环境资源管理 中国 遥感 地理 计算机科学 数学 算法 复合数 数学分析 考古
作者
Xiaoyu Wang,Ying Cai,Gang Liu,Mingjie Zhang,Yuping Bai,Fan Zhang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:70: 101759-101759 被引量:44
标识
DOI:10.1016/j.ecoinf.2022.101759
摘要

Quantifying current carbon emissions their fine scale spatial distribution is necessary to improve carbon emission management, requirements, and emission reduction strategies of key industries. This study established an entity-level model to estimate carbon emissions by combining geographic information of points of interest (POIs) and nighttime light data from Beijing in 2018. The model accounted for the carbon emissions of Beijing's key entities and industries and simulated their spatial distribution. The results showed a good fit between the carbon emissions of the entities and nighttime light brightness values. The 130-m resolution of the urban carbon emission distribution data had a higher spatial simulation accuracy than that of the 1-km Open-Data inventory for anthropogenic carbon dioxide (ODIAC) data. Through the lens of urban functional areas, the average value of carbon emissions was highest in commercial areas and lowest in public management and service areas, at 78,840.11 tC/km2 and 6844.79 tC/km2, respectively. In terms of the industrial sector, the transportation industry had the highest carbon emissions, with a total of 31.86 Mt., while non-metal mining and oil and gas extraction had almost no energy consumption, with total carbon emissions of 1.38 Mt. The spatial clustering results showed that the distribution of carbon emissions in Beijing had a significant positive spatial correlation; forming high-high aggregation clusters dominated by the city center and major business districts and a low-low aggregation clusters dominated by the city's suburban areas. The simulation model clearly reflected the fine scale characteristics of carbon emissions, in terms of their quantity and spatial distribution. Results obtained in this study can aid relevant departments to formulate appropriate strategies for collectively guiding industrial enterprises towards carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助陆智杰采纳,获得10
1秒前
1秒前
2秒前
STEAD发布了新的文献求助10
3秒前
windy完成签到,获得积分10
3秒前
4秒前
123123完成签到 ,获得积分10
4秒前
bcbwibciab发布了新的文献求助10
6秒前
猴子大王发布了新的文献求助10
7秒前
孙健完成签到,获得积分10
7秒前
英俊qiang发布了新的文献求助10
8秒前
8秒前
丘比特应助聆(*^_^*)采纳,获得10
8秒前
大个应助Vicky采纳,获得10
10秒前
好纠结发布了新的文献求助10
11秒前
JamesPei应助笑点低纸鹤采纳,获得10
12秒前
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
小乐应助科研通管家采纳,获得10
12秒前
ccm应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
英俊qiang完成签到,获得积分10
13秒前
Owen应助温暖的惊蛰采纳,获得10
13秒前
在水一方应助温暖的惊蛰采纳,获得10
14秒前
14秒前
学林书屋发布了新的文献求助10
15秒前
桐桐应助美丽的白薇采纳,获得10
15秒前
点墨完成签到 ,获得积分10
15秒前
15秒前
Orange应助Gavin采纳,获得10
17秒前
CipherSage应助猴子大王采纳,获得10
17秒前
陆智杰发布了新的文献求助10
18秒前
自由如南完成签到 ,获得积分10
18秒前
Yeah发布了新的文献求助10
19秒前
bible完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693640
求助须知:如何正确求助?哪些是违规求助? 4064411
关于积分的说明 12567075
捐赠科研通 3762848
什么是DOI,文献DOI怎么找? 2078132
邀请新用户注册赠送积分活动 1106475
科研通“疑难数据库(出版商)”最低求助积分说明 984818