Carbon emission accounting and spatial distribution of industrial entities in Beijing—Combining nighttime light data and urban functional areas

北京 环境科学 空间分布 碳纤维 分布(数学) 环境资源管理 中国 遥感 地理 计算机科学 数学 算法 复合数 数学分析 考古
作者
Xiaoyu Wang,Ying Cai,Gang Liu,Mingjie Zhang,Yuping Bai,Fan Zhang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:70: 101759-101759 被引量:44
标识
DOI:10.1016/j.ecoinf.2022.101759
摘要

Quantifying current carbon emissions their fine scale spatial distribution is necessary to improve carbon emission management, requirements, and emission reduction strategies of key industries. This study established an entity-level model to estimate carbon emissions by combining geographic information of points of interest (POIs) and nighttime light data from Beijing in 2018. The model accounted for the carbon emissions of Beijing's key entities and industries and simulated their spatial distribution. The results showed a good fit between the carbon emissions of the entities and nighttime light brightness values. The 130-m resolution of the urban carbon emission distribution data had a higher spatial simulation accuracy than that of the 1-km Open-Data inventory for anthropogenic carbon dioxide (ODIAC) data. Through the lens of urban functional areas, the average value of carbon emissions was highest in commercial areas and lowest in public management and service areas, at 78,840.11 tC/km2 and 6844.79 tC/km2, respectively. In terms of the industrial sector, the transportation industry had the highest carbon emissions, with a total of 31.86 Mt., while non-metal mining and oil and gas extraction had almost no energy consumption, with total carbon emissions of 1.38 Mt. The spatial clustering results showed that the distribution of carbon emissions in Beijing had a significant positive spatial correlation; forming high-high aggregation clusters dominated by the city center and major business districts and a low-low aggregation clusters dominated by the city's suburban areas. The simulation model clearly reflected the fine scale characteristics of carbon emissions, in terms of their quantity and spatial distribution. Results obtained in this study can aid relevant departments to formulate appropriate strategies for collectively guiding industrial enterprises towards carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小小de小小完成签到,获得积分10
1秒前
情怀应助gus采纳,获得10
2秒前
3秒前
竹林听风发布了新的文献求助10
4秒前
郭九九呢发布了新的文献求助10
5秒前
不想干活应助亮子采纳,获得10
5秒前
8秒前
华仔应助zjcbk985采纳,获得10
11秒前
11秒前
郭九九呢完成签到,获得积分10
11秒前
古月发布了新的文献求助10
14秒前
美丽的冬云完成签到 ,获得积分20
15秒前
在水一方应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
littlechicken发布了新的文献求助10
17秒前
17秒前
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
18秒前
打打应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
iNk应助科研通管家采纳,获得20
18秒前
22秒前
共享精神应助Larry1226采纳,获得10
23秒前
xulin发布了新的文献求助10
23秒前
shidandan完成签到 ,获得积分10
23秒前
24秒前
勿明发布了新的文献求助10
27秒前
缥缈的水彤完成签到,获得积分10
27秒前
魏凡之完成签到 ,获得积分10
31秒前
naturehome发布了新的文献求助10
31秒前
littlechicken完成签到,获得积分10
33秒前
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4166393
求助须知:如何正确求助?哪些是违规求助? 3702051
关于积分的说明 11687086
捐赠科研通 3390452
什么是DOI,文献DOI怎么找? 1859331
邀请新用户注册赠送积分活动 919666
科研通“疑难数据库(出版商)”最低求助积分说明 832340