RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network

生成语法 人工智能 生成对抗网络 构造(python库) 计算机科学 特征(语言学) 特征选择 机器学习 块(置换群论) 模式识别(心理学) 数据挖掘 数学 深度学习 语言学 哲学 几何学 程序设计语言
作者
Yifei Wang,Xue Wang,Cheng Chen,Hongli Gao,Adil Salhi,Xin Gao,Bin Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:141: 109626-109626 被引量:16
标识
DOI:10.1016/j.patcog.2023.109626
摘要

RNA-protein interactions (RPI) play a crucial regulatory role in cellular physiological processes. The study and prediction of RPIs can be insightful for exploring disease mechanisms and drug target design. Traditional RPI prediction methods relied mainly on tedious and expensive biological experiments, and there is an increasing interest in developing more cost-effective computational methods to predict RPIs. This work proposes an interpretable RPI-CapsuleGAN method for RPI prediction based on a generative adversarial capsule network with a convolutional block attention module. First, RPI-CapsuleGAN extracts and fuses multiple features to characterize RNA and protein sequences. Subsequently, the elastic net feature selection method is used to retain features that are highly informative to RPI prediction. Finally, we introduce a convolutional attention mechanism into the generative adversarial capsule network for the first time in order to construct the RPI prediction framework, which is shown to improve the model feature learning of interpretable and expression ability, and effectively solves the problem of the disappearance of the model spatial structure hierarchy. Based on a five-fold cross-validation test, the prediction accuracy of the RPI-CapsuleGAN method reaches 97.1%, 88.8%, 92.5%, 97.3%, and 87.8% for datasets RPI488, RPI369, RPI2241, RPI1807, and RPI1446. The RPI-CapsuleGAN method has higher accuracy than state-of-the-art RPI prediction methods that use the same datasets. In the test dataset NPInter227 constructed in this paper, five groups of test sets are composed of positive samples and five groups of negative samples, the prediction accuracy reaches 97.38%, 96.48%, 97.38%, 97.81%, and 97.15%, respectively, outperforming other mainstream deep learning algorithms. In addition, RPI-CapsuleGAN obtained better results for the prediction of independent test datasets. Extensive experiments detailed here show that RPI-CapsuleGAN can provide an efficient, accurate, and stable method for RPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪火发布了新的文献求助10
刚刚
寒冷凌瑶完成签到,获得积分10
刚刚
开心的懂发布了新的文献求助10
刚刚
刘俸辰发布了新的文献求助10
1秒前
HHHHH发布了新的文献求助10
1秒前
orixero应助雨凇采纳,获得10
1秒前
乐乐应助现实的语兰采纳,获得10
2秒前
2秒前
无略完成签到,获得积分10
3秒前
赘婿应助沉眠猫猫虫采纳,获得10
4秒前
4秒前
niuniu发布了新的文献求助10
5秒前
5秒前
柯伊达发布了新的文献求助10
5秒前
蘑菇中的战斗菇完成签到,获得积分10
5秒前
酷波er应助刘俸辰采纳,获得10
5秒前
5秒前
6秒前
rong完成签到,获得积分10
6秒前
yammay完成签到,获得积分20
7秒前
文静新烟应助狂野东蒽采纳,获得20
7秒前
111发布了新的文献求助10
7秒前
同花顺完成签到,获得积分10
7秒前
青尘如墨发布了新的文献求助10
7秒前
英俊的铭应助英俊乌龟采纳,获得10
8秒前
6223完成签到,获得积分10
8秒前
SciGPT应助draw9708采纳,获得10
8秒前
SciGPT应助HHHHH采纳,获得10
8秒前
9秒前
9秒前
9秒前
luffy发布了新的文献求助10
9秒前
蔡继海完成签到,获得积分10
9秒前
咲韶完成签到,获得积分10
10秒前
Slence发布了新的文献求助10
10秒前
10秒前
丘比特应助飘逸怜菡采纳,获得10
11秒前
罗霖应助Koalas采纳,获得50
11秒前
ikochou完成签到,获得积分20
11秒前
zimo完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341080
求助须知:如何正确求助?哪些是违规求助? 4477385
关于积分的说明 13935147
捐赠科研通 4373423
什么是DOI,文献DOI怎么找? 2402988
邀请新用户注册赠送积分活动 1395878
关于科研通互助平台的介绍 1367862