Transfer learning; powerful and fast segmentation and classification prostate cancer from MRI scans, in the development set

计算机科学 深度学习 学习迁移 人工智能 分割 机器学习 前列腺癌 模式识别(心理学) 集合(抽象数据类型) 数据集 特征(语言学) 癌症 医学 哲学 内科学 程序设计语言 语言学
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (2): 2005-2017
标识
DOI:10.3233/jifs-224274
摘要

Since prostate cancer is one of the most important causes of death in today’s society, the investigation of why and how to diagnose and predict it has received much attention from researchers. The cooperation of computer and medical experts provides a new solution in analyzing these data and obtaining useful and practical models, which is deep learning. In fact, deep learning as one of the most important tools for analyzing data and discovering relationships between them and predicting the occurrence of events is one of the practical tools of researchers in this way. This study segments and classifies prostate cancer using a deep learning approach and architectures tested in the ImageNet dataset and based on a method to identify factors affecting this disease. In the proposed method, after increasing the number of data based on removing dominant noises in MRI images, image segmentation using a network based on deep learning called faster R-CNN, and then feature extraction and classification with architecture Various deep learning networks have reached the appropriate accuracy and speed in detection and classification. The aim of this study is to reduce unnecessary biopsies and to choose and plan treatment to help the doctor and the patient. Achieving the minimum error in the diagnosis of malignant lesion with a criterion called Sensitivity of 93.54% and AUC equal to 95% with the ResNet50 architecture has achieved the goal of this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路又菱完成签到,获得积分10
1秒前
猫大熊完成签到,获得积分10
1秒前
shuiliuyuzai完成签到,获得积分10
2秒前
解圣洁发布了新的文献求助10
2秒前
2秒前
小蘑菇应助朴素元珊采纳,获得10
2秒前
2秒前
abner完成签到,获得积分10
3秒前
paddi发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
Stanfuny完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
洁净糖豆完成签到,获得积分10
6秒前
6秒前
6秒前
香蕉觅云应助Able阿拉基采纳,获得10
6秒前
7秒前
Maestro_S应助Dr_MA采纳,获得10
7秒前
8秒前
xuening完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
万能图书馆应助All采纳,获得10
8秒前
AJY完成签到,获得积分10
8秒前
9秒前
安稳先生发布了新的文献求助10
9秒前
9秒前
英姑应助幼稚园大王采纳,获得10
9秒前
10秒前
XIX完成签到,获得积分10
10秒前
快乐难敌发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664