Predicting Pedestrian Crossing Behavior at Unsignalized Mid-Block Crosswalks Using Maximum Entropy Deep Inverse Reinforcement Learning

行人 计算机科学 块(置换群论) 人工智能 最大熵原理 熵(时间箭头) 运输工程 工程类 数学 组合数学 物理 量子力学
作者
Yongjie Wang,Yuchen Niu,Wenying Zhu,Wenqiang Chen,Qiong Li,Tao Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 3685-3698 被引量:9
标识
DOI:10.1109/tits.2023.3326276
摘要

In the future driverless scenario, pedestrian-vehicle conflict is an unavoidable traffic problem at unsignalized mid-block crosswalks. Autonomous vehicles are obviously impossible to make eye contact with pedestrians the way a human driver can. Therefore, there is an urgent need for autonomous vehicles to achieve accurate predictions of pedestrian crossing behavior. In order to better solve the problem of high uncertainty of pedestrian crossing behavior, in this paper, a modeling framework combines Maximum Entropy Deep Inverse Reinforcement Learning (Deep MEIRL) and reinforcement learning is employed to predict pedestrian crossing behaviors. The dataset of drone-based video footage is collected in Xi'an (China) to train and validate the model. The trajectory dataset, extracted by computer vision algorithm, is implemented to derive state features of pedestrian behavior, including pedestrian to target area distance, vehicle type, vehicle speed, lateral/longitudinal distances, pedestrian lateral/longitudinal velocities. The results reveal that Deep MEIRL performs better than a baseline model MEIRL at micro-scales such as predicting pedestrian trajectories and evasive actions. Specifically, in predicting pedestrian trajectories, the Deep MEIRL outperforms the MEIRL by 33.09% and 15.16% on the basis of the MAE and HD, respectively. Meanwhile, the Deep MEIRL is 28.7% and 17.6% respectively more accurate than the MEIRL in predicting pedestrian evasive actions on lateral and longitudinal directions. Furthermore, we also found that there is heterogeneity in pedestrian crossing behavior when interacting with different vehicles. This research can contribute to a critical step toward addressing the safe and efficient movement at unsignalized mid-block crosswalks for autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
咕嘟咕嘟发布了新的文献求助10
刚刚
刚刚
科研通AI6应助caicai采纳,获得10
1秒前
酷波er应助vita采纳,获得10
1秒前
1秒前
2秒前
Aipoi1完成签到,获得积分10
2秒前
NaveahNi完成签到,获得积分10
3秒前
谦让白玉发布了新的文献求助10
3秒前
3秒前
Owen应助韩佃晖采纳,获得10
4秒前
4秒前
4秒前
回复对方发布了新的文献求助10
6秒前
SJW--666发布了新的文献求助10
6秒前
李爱国应助77呱呱呱采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
小墩墩完成签到,获得积分10
9秒前
充电宝应助kakakaku采纳,获得10
9秒前
浮游应助健壮问兰采纳,获得10
9秒前
张正完成签到,获得积分10
10秒前
zfihead发布了新的文献求助10
10秒前
所所应助书记采纳,获得10
11秒前
魔幻友菱完成签到 ,获得积分10
11秒前
有机会吗发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
Aipoi完成签到,获得积分10
15秒前
cc完成签到 ,获得积分10
15秒前
16秒前
16秒前
科研通AI6应助yyy采纳,获得10
17秒前
17秒前
CAN完成签到,获得积分10
17秒前
嗯哼发布了新的文献求助10
18秒前
yiqi发布了新的文献求助10
18秒前
杜雨柔完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462419
求助须知:如何正确求助?哪些是违规求助? 4567153
关于积分的说明 14308952
捐赠科研通 4492974
什么是DOI,文献DOI怎么找? 2461326
邀请新用户注册赠送积分活动 1450462
关于科研通互助平台的介绍 1425794