Developing a Quality Control System in a Continuous Hot Air Heating Process in Surimi Seafood Processing Using Image Analysis and Artificial Intelligence

人工智能 规范化(社会学) 卷积神经网络 淀粉 水分 计算机科学 模式识别(心理学) 数学 生物系统 化学 材料科学 食品科学 复合材料 生物 人类学 社会学
作者
Won Byong Yoon,Seohee An,Timilehin Martins Oyinloye,Jin-Ho Kim
出处
期刊:Processes [MDPI AG]
卷期号:11 (11): 3187-3187 被引量:4
标识
DOI:10.3390/pr11113187
摘要

In this study, the feasibility of classifying surimi gels during a continuous heating process using an artificial intelligence (AI) algorithm on labeled images was investigated. Surimi paste with varying corn starch concentrations (0%, 5%, and 10%) and moisture content levels (78% and 80%) from Alaska pollock were analyzed for the subtle physical changes. Rheological characterization and K-means clustering analysis performed on entire images captured from different batches of heated surimi gel indicated a four-stage transformation from its initial state to gel formation with the temperature ranges spanning 25 to <40 °C, 40 to <50 °C, 50 to <55 °C, and 55 to 80 °C. Subsequently, a Convolutional Neural Network (CNN) model based on the temperature classification was designed to interpret and classify these images. A total of 1000 to 1200 images were used for the training, testing, and validation purposes in the ratio 7:1:2. The CNN architecture incorporated essential elements including an input layer, convolutional layers, rectified linear unit (ReLU) activation functions, normalization layers, and max-pooling layers. The CNN model achieved validation accuracy >92.67% for individual mixture composition, 94.53% for classifying surimi samples based on moisture content, and gelation level, and 89.73% for complex classifications involving moisture content, starch concentration, and gelation stages. Additionally, it exhibited high average precision, recall, and F1 scores (>0.92), indicating precision and sensitivity in identifying relevant instances. The success of CNN in non-destructively classifying surimi gels with different moisture and starch contents is demonstrated in this work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
science完成签到,获得积分10
刚刚
瞿江源完成签到,获得积分10
刚刚
刚刚
noyal完成签到,获得积分20
1秒前
嘴角微微仰起笑应助mmyhn采纳,获得10
1秒前
goodidea完成签到,获得积分10
1秒前
1秒前
李大椰发布了新的文献求助10
1秒前
Lucas应助mxb采纳,获得10
1秒前
2秒前
qingmoheng应助shuxiansheng采纳,获得10
2秒前
3秒前
mineng发布了新的文献求助10
3秒前
3秒前
DKY完成签到,获得积分10
3秒前
AIAIAIAIAIAI发布了新的文献求助10
3秒前
3秒前
cghmfgh发布了新的文献求助20
4秒前
4秒前
小布完成签到,获得积分20
4秒前
5秒前
5秒前
薄荷完成签到 ,获得积分10
5秒前
霸气乐菱发布了新的文献求助10
5秒前
5秒前
xanderxue完成签到,获得积分10
5秒前
8941完成签到 ,获得积分10
7秒前
Moonchild发布了新的文献求助10
7秒前
小布发布了新的文献求助10
8秒前
李德胜完成签到,获得积分10
8秒前
刻苦莫言完成签到,获得积分10
8秒前
桐桐应助butterfly采纳,获得10
9秒前
杂兵甲发布了新的文献求助10
10秒前
10秒前
科目三应助潇洒依白采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
ss发布了新的文献求助10
11秒前
11秒前
陈夏萍发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218