亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Unlearning With Momentum Degradation

计算机科学 降级(电信) 动量(技术分析) 电信 业务 财务
作者
Yian Zhao,Pengfei Wang,Heng Qi,Jianguo Huang,Zongzheng Wei,Qiang Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8860-8870 被引量:13
标识
DOI:10.1109/jiot.2023.3321594
摘要

Data privacy is becoming increasingly important as data becomes more valuable, as evidenced by the enactment of right-to-be-forgotten laws and regulations. However, in a federated learning (FL) system, simply deleting data from the database when a user requests data revocation is not sufficient, as the training data is already implicitly contained in the parameter distribution of the models trained with it. Furthermore, the global model in the FL system is vulnerable to data poisoning attacks by malicious nodes. Exploring a reliable data poisoning reversal method can effectively counter such attacks. In this article, we analyze the necessity of decoupling the processes of unlearning and training and propose a training-agnostic and efficient method that can effectively perform two types of unlearning tasks: 1) client revocation and 2) category removal. Specifically, we decompose the unlearning process into two steps: 1) knowledge erasure and 2) memory guidance. We first propose a novel knowledge erasure strategy called momentum degradation (MoDe) which realizes the erasure of implicit knowledge in the model and ensures that the model can move smoothly to the early state of the retrained model. To mitigate the performance degradation caused by the first step, the memory guidance strategy implements guided fine-tuning of the model on different data points, which can effectively restore the discriminability of the model on the remaining data points. Extensive experiments demonstrate that our method outperforms the existing task-specific algorithms and matches the performance of retraining, accelerating the execution time by 5–20 times compared to retraining on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wesz9887完成签到,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
无限的可乐完成签到,获得积分10
2分钟前
不想看文献完成签到 ,获得积分10
2分钟前
3分钟前
starbinbin发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
5分钟前
6分钟前
优雅听枫应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
Chen完成签到 ,获得积分10
7分钟前
7分钟前
XXXXX完成签到 ,获得积分10
7分钟前
貔貅完成签到 ,获得积分10
7分钟前
TXZ06完成签到,获得积分10
7分钟前
JamesPei应助沉静盼易采纳,获得10
8分钟前
沉静盼易完成签到,获得积分10
8分钟前
老迟到的梦旋完成签到 ,获得积分10
8分钟前
一只小锦鲤完成签到 ,获得积分10
8分钟前
dd发布了新的文献求助10
9分钟前
dd完成签到,获得积分10
10分钟前
10分钟前
10分钟前
噔噔蹬发布了新的文献求助10
10分钟前
Ava应助科研通管家采纳,获得10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
11分钟前
非洲大象完成签到,获得积分10
11分钟前
11分钟前
机智的孤兰完成签到 ,获得积分10
12分钟前
小马甲应助药石无医采纳,获得10
12分钟前
药石无医发布了新的文献求助10
12分钟前
12分钟前
奈思完成签到 ,获得积分10
12分钟前
药石无医发布了新的文献求助10
12分钟前
科研通AI6应助科研通管家采纳,获得10
12分钟前
MchemG应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498758
求助须知:如何正确求助?哪些是违规求助? 3949769
关于积分的说明 12244804
捐赠科研通 3608227
什么是DOI,文献DOI怎么找? 1984839
邀请新用户注册赠送积分活动 1021239
科研通“疑难数据库(出版商)”最低求助积分说明 913670