Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis

医学 脂肪变性 分级(工程) 非酒精性脂肪肝 接收机工作特性 肝活检 放射科 活检 脂肪肝 回顾性队列研究 内科学 疾病 工程类 土木工程
作者
Pedro Vianna,Sara‐Ivana Calce,Pamela Boustros,Cassandra Larocque-Rigney,Laurent Patry-Beaudoin,Yi Hui Luo,Emre Aslan,John Marinos,Talal Alamri,Kim‐Nhien Vu,Jessica Murphy-Lavallée,Jean-Sébastien Billiard,Emmanuel Montagnon,Hongliang Li,Samuel Kadoury,Bich Nguyen,Shanel Gauthier,Benjamin Therien,Irina Rish,Eugene Belilovsky
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.230659
摘要

Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose To evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
009完成签到 ,获得积分10
1秒前
wuwuwu发布了新的文献求助10
2秒前
2秒前
光怪发布了新的文献求助10
3秒前
4秒前
Daaz完成签到,获得积分10
5秒前
Steven发布了新的文献求助10
7秒前
韋晴完成签到,获得积分10
7秒前
8秒前
重要梦之完成签到,获得积分20
8秒前
小亮哈哈发布了新的文献求助10
9秒前
9秒前
9秒前
风趣白羊完成签到,获得积分20
10秒前
孙燕应助柠檬味的龙采纳,获得10
12秒前
12秒前
Yu完成签到,获得积分10
13秒前
13秒前
撒西不理发布了新的文献求助10
14秒前
jiajiajai完成签到,获得积分10
14秒前
14秒前
Mozart完成签到,获得积分10
15秒前
17秒前
wangmeixian完成签到 ,获得积分10
17秒前
小鲨鱼发布了新的文献求助10
18秒前
djf完成签到,获得积分10
19秒前
田様应助光怪采纳,获得10
20秒前
洁净的惜筠应助和花花采纳,获得10
20秒前
21秒前
21秒前
21秒前
22秒前
wBw关闭了wBw文献求助
22秒前
华仔应助高高的寄灵采纳,获得10
23秒前
23秒前
23秒前
Orange应助火星上妙梦采纳,获得10
25秒前
25秒前
25秒前
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114024
求助须知:如何正确求助?哪些是违规求助? 3652423
关于积分的说明 11566220
捐赠科研通 3356655
什么是DOI,文献DOI怎么找? 1843762
邀请新用户注册赠送积分活动 909720
科研通“疑难数据库(出版商)”最低求助积分说明 826488