Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis

医学 脂肪变性 分级(工程) 非酒精性脂肪肝 接收机工作特性 肝活检 放射科 活检 脂肪肝 回顾性队列研究 内科学 疾病 土木工程 工程类
作者
Pedro Vianna,Sara‐Ivana Calce,Pamela Boustros,Cassandra Larocque-Rigney,Laurent Patry-Beaudoin,Yi Hui Luo,Emre Aslan,John Marinos,Talal Alamri,Kim‐Nhien Vu,Jessica Murphy-Lavallée,Jean-Sébastien Billiard,Emmanuel Montagnon,Hongliang Li,Samuel Kadoury,Bich Nguyen,Shanel Gauthier,Benjamin Therien,Irina Rish,Eugene Belilovsky
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:9
标识
DOI:10.1148/radiol.230659
摘要

Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose To evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrewmed发布了新的文献求助10
刚刚
lakers发布了新的文献求助10
1秒前
传奇3应助Labubububu采纳,获得10
2秒前
2秒前
3秒前
半岛铁盒发布了新的文献求助10
3秒前
岳岳岳发布了新的文献求助10
6秒前
guozizi发布了新的文献求助30
7秒前
无花果应助刑天采纳,获得10
7秒前
珊啊是珊珊啊完成签到 ,获得积分10
9秒前
路人一枚发布了新的文献求助10
10秒前
10秒前
彪壮的吐司完成签到,获得积分10
11秒前
田T应助datang采纳,获得10
11秒前
阿飞飞发布了新的文献求助30
13秒前
15秒前
小慧儿发布了新的文献求助10
16秒前
16秒前
18秒前
tian19998完成签到,获得积分10
19秒前
19秒前
tian19998发布了新的文献求助10
21秒前
Labubububu发布了新的文献求助10
22秒前
Ava应助咻咻采纳,获得10
23秒前
糊涂的萍发布了新的文献求助10
24秒前
情怀应助aosiyi采纳,获得10
27秒前
自觉雨文发布了新的文献求助10
28秒前
搜集达人应助tian19998采纳,获得10
28秒前
28秒前
ll发布了新的文献求助30
28秒前
gzhoax完成签到,获得积分10
29秒前
领导范儿应助xx采纳,获得10
30秒前
31秒前
32秒前
华仔应助科研通管家采纳,获得10
32秒前
星辰大海应助科研通管家采纳,获得10
32秒前
lizishu应助科研通管家采纳,获得10
32秒前
lizishu应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
搜集达人应助满意白卉采纳,获得30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623