Multi-modal person re-identification based on transformer relational regularization

计算机科学 模式 判别式 情态动词 相互信息 机器学习 人工智能 水准点(测量) 正规化(语言学) 变压器 信息交流 数据挖掘 模式识别(心理学) 电信 社会科学 化学 物理 大地测量学 量子力学 电压 社会学 高分子化学 地理
作者
Xiangtian Zheng,Xiaohua Huang,Chen Ji,Xiaolin Yang,Pengcheng Sha,Liang Cheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102128-102128 被引量:3
标识
DOI:10.1016/j.inffus.2023.102128
摘要

For robust multi-modal person re-identification (re-ID) models, it is crucial to effectively utilize the complementary information and constraint relationships among different modalities. However, current multi-modal methods often overlook the correlation between modalities at the feature fusion stage. To address this issue, we propose a novel multimodal person re-ID method called Transformer Relation Regularization (TRR). Firstly, we introduce an adaptive collaborative matching module that facilitates the exchange of useful information by mining feature correspondences between modalities. This module allows for the integration of complementary information, enhancing the re-ID performance. Secondly, we propose an enhanced embedded module that corrects general information using discriminative information within each modality. By leveraging this approach, we improve the model's stability in challenging multi-modal environments. Lastly, we propose an adaptive triple loss to enhance sample utilization efficiency and mitigate the problem of inconsistent representation among multimodal samples. This loss function optimizes the model's ability to distinguish between different individuals, leading to improved re-ID accuracy. Experimental results on several challenging visible-infrared person re-ID benchmark datasets demonstrate that our proposed TRR method achieves optimal performance. Additionally, extensive ablation studies validate the effective contribution of each component to the overall model. In summary, our proposed TRR method effectively leverages complementary information, addresses the correlation between modalities, and improves the re-ID performance in multi-modal scenarios. The results obtained from various benchmark datasets and the comprehensive analysis support the efficacy of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
田様应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Skuld应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Skuld应助科研通管家采纳,获得10
3秒前
周哲发布了新的文献求助10
3秒前
knmno2应助科研通管家采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得30
3秒前
Skuld应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
7秒前
钰宁发布了新的文献求助10
9秒前
yiyi完成签到,获得积分10
9秒前
白青完成签到,获得积分10
9秒前
10秒前
12秒前
13秒前
小鱼完成签到,获得积分10
14秒前
15秒前
小鸣完成签到 ,获得积分10
15秒前
16秒前
敏敏完成签到 ,获得积分10
16秒前
AnJaShua发布了新的文献求助10
16秒前
搜集达人应助天天开心采纳,获得10
18秒前
zhong241发布了新的文献求助10
19秒前
祺君发布了新的文献求助20
22秒前
可爱非笑发布了新的文献求助10
22秒前
25秒前
25秒前
27秒前
27秒前
共享精神应助周哲采纳,获得10
28秒前
min发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627