Question Classification for Intelligent Question Answering: A Comprehensive Survey

计算机科学 答疑 情报检索 瓶颈 个性化 人工智能 数据科学 万维网 嵌入式系统
作者
Hao Sun,Shu Wang,Yunqiang Zhu,Wenmin Yuan,Zhiqiang Zou
出处
期刊:ISPRS international journal of geo-information [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 415-415 被引量:1
标识
DOI:10.3390/ijgi12100415
摘要

In the era of GeoAI, Geospatial Intelligent Question Answering (GeoIQA) represents the ultimate pursuit for everyone. Even generative AI systems like ChatGPT-4 struggle to handle complex GeoIQA. GeoIQA is domain complex IQA, which aims at understanding and answering questions accurately. The core of IQA is the Question Classification (QC), which mainly contains four types: content-based, template-based, calculation-based and method-based classification. These IQA_QC frameworks, however, struggle to be compatible and integrate with each other, which may be the bottleneck restricting the substantial improvement of IQA performance. To address this problem, this paper reviewed recent advances on IQA with the focus on solving question classification and proposed a comprehensive IQA_QC framework for understanding user query intention more accurately. By introducing the basic idea of the IQA mechanism, a three-level question classification framework consisting of essence, form and implementation is put forward which could cover the complexity and diversity of geographical questions. In addition, the proposed IQA_QC framework revealed that there are still significant deficiencies in the IQA evaluation metrics in the aspect of broader dimensions, which led to low answer performance, functional performance and systematic performance. Through the comparisons, we find that the proposed IQA_QC framework can fully integrate and surpass the existing classification. Although our proposed classification can be further expanded and improved, we firmly believe that this comprehensive IQA_QC framework can effectively help researchers in both semantic parsing and question querying processes. Furthermore, the IQA_QC framework can also provide a systematic question-and-answer pair/library categorization system for AIGCs, such as GPT-4. In conclusion, whether it is explicit GeoAI or implicit GeoAI, the IQA_QC can play a pioneering role in providing question-and-answer types in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
大个应助WHHW采纳,获得10
3秒前
3秒前
十一发布了新的文献求助10
4秒前
闪闪完成签到,获得积分10
6秒前
炙热冥王星完成签到,获得积分10
6秒前
zhuminghui发布了新的文献求助10
6秒前
HCF发布了新的文献求助10
7秒前
黑妖发布了新的文献求助10
8秒前
积极芷容发布了新的文献求助10
9秒前
laihama完成签到,获得积分10
9秒前
dfhjjj完成签到 ,获得积分10
15秒前
脑洞疼应助zhuminghui采纳,获得10
16秒前
17秒前
HCF完成签到,获得积分10
20秒前
Akim应助积极芷容采纳,获得10
20秒前
100发布了新的文献求助10
21秒前
光亮的逍遥完成签到,获得积分10
22秒前
田様应助黑妖采纳,获得10
23秒前
pluto应助DAYDAY采纳,获得20
24秒前
会飞的史迪奇完成签到,获得积分10
27秒前
Lucifer完成签到,获得积分10
27秒前
27秒前
烟柳画桥完成签到,获得积分10
29秒前
刘敏小七给刘敏小七的求助进行了留言
32秒前
33秒前
34秒前
Kkk完成签到 ,获得积分10
34秒前
独特寒安完成签到,获得积分10
34秒前
34秒前
科研通AI5应助你帅你有理采纳,获得10
35秒前
KZxxx发布了新的文献求助10
37秒前
marc107完成签到,获得积分10
39秒前
ljcznhy发布了新的文献求助10
40秒前
小政完成签到 ,获得积分10
40秒前
慕青应助细心的小鸽子采纳,获得10
41秒前
欣慰晓兰完成签到,获得积分20
41秒前
所所应助陈陈采纳,获得30
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921