A self-healing method for concrete cracks based on microbial-induced carbonate precipitation: bacteria, immobilization, characterization, and application
AbstractMicrobial-induced carbonate precipitation (MICP) technology has gained significant traction as an eco-friendly, cost-effective, and intelligent self-healing method for concrete cracks. The harsh service environment and high alkalinity of cement matrices have posed a significant challenge to the survival and growth of bacteria, which is crucial for the success of MICP technologies in concrete components. This article aims to present an up-to-date overview of the current research status of self-healing concrete cracks utilizing MICP technology. Specifically, it comprehensively reviews the selection of mineralization repair systems, encompassing repair mechanisms, effects, processes, nutrient addition sequences, and carrier selection. Furthermore, various characterization methods for evaluating the self-healing ability of concrete are explored, accompanied by an in-depth analysis of practical applications of self-healing concrete. Finally, this paper highlights the pressing issues facing this technology while outlining promising directions for future advancement.Keywords: MICPself-healing concretecarriercharacterizationapplications Author contributionsLu Jiang: methodology, investigation, conceptualization. Pengjun Li: writing original draft. Wenjing Wang: writing-review and editing, funding acquisition. Yu Zhang: writing-review and editing. Zhu Li: supervision, resources, investigation.Additional informationFundingFunding was provided by the National Natural Science Foundation of China (Nos. 52208258 and 52078473) and Natural Science Foundation of Ningxia Hui Autonomous Region, China (Nos. 2023AAC05011 and 2022AAC03072).