MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition

计算机科学 卷积神经网络 人工智能 图像(数学) 模式识别(心理学) 深度学习 机器学习
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107079-107079 被引量:42
标识
DOI:10.1016/j.engappai.2023.107079
摘要

A broad range of prior research has demonstrated that attention mechanisms offer great potential in advancing the performance of deep convolutional neural networks (CNNs). However, most existing approaches either ignore modeling attention in both channel and spatial dimensions or introduce higher model complexity and heavier computational burden. To alleviate this dilemma, in this paper, we propose a lightweight and efficient multidimensional collaborative attention, MCA, a novel method for simultaneously inferring attention in channel, height, and width dimensions with almost free additional overhead by using a three-branch architecture. For the essential components of MCA, we not only develop an adaptive combination mechanism for merging dual cross-dimension feature responses in squeeze transformation, enhancing the informativeness and discriminability of feature descriptors but also design a gating mechanism in excitation transformation that adaptively determines the coverage of interaction to capture local feature interactions, overcoming the paradox of performance and computational overhead trade-off. Our MCA is simple yet general and can be easily plugged into various classic CNNs as a plug-and-play module and trained along with the vanilla networks in an end-to-end manner. Extensive experimental results for image recognition on CIFAR and ImageNet-1K datasets demonstrate the superiority of our method over other state-of-the-art (SOTA) counterparts. In addition, we also provide insight into the practical benefits of MCA by visually inspecting the GradCAM++ visualization results. The code is available at https://github.com/ndsclark/MCANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ED应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
shinysparrow应助科研通管家采纳,获得200
1秒前
852应助科研通管家采纳,获得10
1秒前
鹿lu应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
一地狗粮完成签到,获得积分10
1秒前
mjk2622应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得200
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
May应助科研通管家采纳,获得20
3秒前
3秒前
淡定的半鬼完成签到,获得积分10
3秒前
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
nn应助科研通管家采纳,获得10
3秒前
4秒前
zhtgang发布了新的文献求助10
4秒前
kkkkkk发布了新的文献求助30
5秒前
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934853
求助须知:如何正确求助?哪些是违规求助? 3480307
关于积分的说明 11008998
捐赠科研通 3210403
什么是DOI,文献DOI怎么找? 1774145
邀请新用户注册赠送积分活动 860755
科研通“疑难数据库(出版商)”最低求助积分说明 797906