已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition

计算机科学 卷积神经网络 人工智能 图像(数学) 模式识别(心理学) 深度学习 机器学习
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107079-107079 被引量:39
标识
DOI:10.1016/j.engappai.2023.107079
摘要

A broad range of prior research has demonstrated that attention mechanisms offer great potential in advancing the performance of deep convolutional neural networks (CNNs). However, most existing approaches either ignore modeling attention in both channel and spatial dimensions or introduce higher model complexity and heavier computational burden. To alleviate this dilemma, in this paper, we propose a lightweight and efficient multidimensional collaborative attention, MCA, a novel method for simultaneously inferring attention in channel, height, and width dimensions with almost free additional overhead by using a three-branch architecture. For the essential components of MCA, we not only develop an adaptive combination mechanism for merging dual cross-dimension feature responses in squeeze transformation, enhancing the informativeness and discriminability of feature descriptors but also design a gating mechanism in excitation transformation that adaptively determines the coverage of interaction to capture local feature interactions, overcoming the paradox of performance and computational overhead trade-off. Our MCA is simple yet general and can be easily plugged into various classic CNNs as a plug-and-play module and trained along with the vanilla networks in an end-to-end manner. Extensive experimental results for image recognition on CIFAR and ImageNet-1K datasets demonstrate the superiority of our method over other state-of-the-art (SOTA) counterparts. In addition, we also provide insight into the practical benefits of MCA by visually inspecting the GradCAM++ visualization results. The code is available at https://github.com/ndsclark/MCANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到,获得积分10
1秒前
地SDF完成签到,获得积分10
3秒前
林钰浩发布了新的文献求助10
4秒前
LOVER完成签到 ,获得积分10
4秒前
科研通AI2S应助乐观的镜子采纳,获得10
4秒前
所所应助乐观的灭绝采纳,获得10
6秒前
10秒前
11秒前
乔达摩完成签到 ,获得积分10
11秒前
12秒前
小蘑菇应助筱筱采纳,获得10
13秒前
陈瑶完成签到,获得积分10
16秒前
lgj666发布了新的文献求助10
16秒前
17秒前
19秒前
雨雨雨雨雨完成签到,获得积分10
23秒前
初见发布了新的文献求助10
23秒前
24秒前
桐桐应助林小昀采纳,获得10
24秒前
29秒前
30秒前
向日葵完成签到,获得积分10
30秒前
33秒前
36秒前
37秒前
时雨完成签到 ,获得积分10
39秒前
zzz完成签到 ,获得积分10
42秒前
asdf发布了新的文献求助10
43秒前
善学以致用应助burrrrr采纳,获得10
43秒前
Owen应助啦啦啦采纳,获得10
43秒前
JamesPei应助WWZ采纳,获得10
44秒前
大模型应助科研通管家采纳,获得10
49秒前
Lucas应助科研通管家采纳,获得10
49秒前
斯文败类应助科研通管家采纳,获得10
49秒前
乔达摩悉达多完成签到 ,获得积分10
50秒前
51秒前
啦啦啦完成签到,获得积分10
51秒前
53秒前
啦啦啦发布了新的文献求助10
54秒前
万能图书馆应助joasuka采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782466
求助须知:如何正确求助?哪些是违规求助? 3327919
关于积分的说明 10233716
捐赠科研通 3042869
什么是DOI,文献DOI怎么找? 1670261
邀请新用户注册赠送积分活动 799662
科研通“疑难数据库(出版商)”最低求助积分说明 758904