Application of Artificial Neural Networks in the Prediction of Tire Manufacturing Defects

人工神经网络 多层感知器 均方误差 工程类 过程(计算) 帧(网络) 感知器 变量(数学) 生产(经济) 集合(抽象数据类型) 计算机科学 人工智能 数学 机械工程 统计 宏观经济学 数学分析 经济 操作系统 程序设计语言
作者
Wojciech Majewski,Ewa Dostatni,Jacek Diakun,Dariusz Mikołajewski,Izabela Rojek
出处
期刊:Lecture notes in mechanical engineering 卷期号:: 185-194
标识
DOI:10.1007/978-3-031-44282-7_15
摘要

The article presents actual challenges faced by tire manufacturers and contemporary industry. Directions of development of methods for detecting and eliminating defects generated in the tire production process were discussed, with particular emphasis on methods using artificial intelligence. An exemplary classification of tire defects is presented. It was noted that a solution to reduce the amount of tire waste due to exceeding the uniformity limits is needed. Quantities describing tire uniformity were characterized. In the frame of the main purpose of the research, it was checked whether the model based on a traditional artificial neural network (with one hidden layer) can predict the value of conicity (output variable) based on five input variables. To solve this problem, the authors used the Multi-Layer Perceptron (MLP) - machine learning method, due to its ability to train non-linear models in “almost real time”. The parameters of the network structure were determined to guarantee the achievement of root-mean-square error (RMSE) for the training set data at a very low, satisfactory level. The authors see the high potential of using the built model in the mass production of tires. Application of mentioned model will minimize the waste of time and tire components scraps, and also will actually improve the quality of the final product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
优雅盼海发布了新的文献求助10
2秒前
繁花完成签到,获得积分10
2秒前
李笑发布了新的文献求助10
3秒前
longchb发布了新的文献求助10
4秒前
Nevaeh完成签到,获得积分10
5秒前
TT完成签到,获得积分10
5秒前
lihua发布了新的文献求助10
6秒前
6秒前
sunyz应助敬老院N号采纳,获得10
7秒前
noflatterer完成签到,获得积分10
7秒前
党洪量应助lincool采纳,获得10
7秒前
ste56完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
汲取知识的poiu完成签到,获得积分10
11秒前
姨姨完成签到,获得积分10
11秒前
longchb完成签到,获得积分10
12秒前
12秒前
狗大王完成签到,获得积分10
12秒前
RitaLee完成签到 ,获得积分10
13秒前
温夏完成签到 ,获得积分10
13秒前
dali发布了新的文献求助10
13秒前
充电宝应助lihua采纳,获得10
14秒前
14秒前
向北游发布了新的文献求助10
14秒前
hanzhipad应助汲取知识的poiu采纳,获得20
15秒前
拿铁五分糖完成签到,获得积分10
15秒前
沈海完成签到,获得积分10
15秒前
默默的立辉完成签到,获得积分10
15秒前
16秒前
访客完成签到,获得积分10
16秒前
17秒前
ding应助无情向梦采纳,获得10
17秒前
jimmyhui发布了新的文献求助10
17秒前
冷酷鱼完成签到 ,获得积分10
18秒前
丘比特应助湖工大保卫处采纳,获得10
18秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828398
求助须知:如何正确求助?哪些是违规求助? 3370744
关于积分的说明 10464568
捐赠科研通 3090632
什么是DOI,文献DOI怎么找? 1700487
邀请新用户注册赠送积分活动 817859
科研通“疑难数据库(出版商)”最低求助积分说明 770566