A BP-Smith combined temperature control method for thin film preparation processing

超调(微波通信) 人工神经网络 温度控制 计算机科学 过程(计算) 联轴节(管道) 控制(管理) 控制理论(社会学) 控制工程 人工智能 工程类 机械工程 电信 操作系统
作者
Yajie Huang,Donglai Zhang,Bin Zhang,Shimin Pan,Anshou Li,Zhichao Wang
出处
期刊:Semiconductor Science and Technology [IOP Publishing]
卷期号:40 (1): 015018-015018
标识
DOI:10.1088/1361-6641/ad9946
摘要

Abstract Thin film preparation methods are receiving increasing attention because of their wide range of applications in semiconductor devices, optoelectronics, flat panel displays, solar cells, sensors, micromechanical systems, and other fields, and they provide essential technologies for the development and application of various advanced materials. This paper proposes a method combining BP neural network control and Smith prediction to solve the nonlinear thermal regulation control problem and consider the coupling effect between temperature regions in a multi-region setting. The BP neural network is used to control the dynamic neural network to identify the dynamic model of the temperature area and realize online learning of neural network weights. The system uses Smith prediction to solve the delay problem and ensure system performance. Our controlled equipment is a tank for the boron diffusion process. The control goal of this paper is to track the target temperature stably and accurately through the proposed method. The temperature control accuracy is within ±1 °C tolerance of set point in steady state. The temperature control strategy proposed here also adds an error factor for temperature coupling in the neural network part, and the control results are better able to meet the temperature control requirements of the actual process. This method provides innovative insights into and effective solutions for temperature control during thin film preparation. It reduces the amount of overshoot, saves a lot of power and manpower for model change temperature control, and is a highly adaptive model change control method. This paper begins by theoretically analyzing the advantages of neural networks and Smith predictive control. Secondly, thermal simulations are performed to analyzes the coupling conditions between the temperature zones. Finally, experimental tests evaluate the steady-state and dynamic performances of the control strategy and verify the intended advantages of the proposed control method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助rubo采纳,获得10
刚刚
刚刚
我要留学应助Katyusha采纳,获得10
刚刚
凛冰给凛冰的求助进行了留言
刚刚
蓝天完成签到,获得积分10
1秒前
小蘑菇应助chf102采纳,获得10
2秒前
wbhou完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
3秒前
frl发布了新的文献求助10
3秒前
孤独丹秋发布了新的文献求助10
4秒前
4秒前
ikki发布了新的文献求助10
4秒前
烂漫成仁发布了新的文献求助20
4秒前
满意剑成发布了新的文献求助10
4秒前
吉小洋发布了新的文献求助10
4秒前
5秒前
5秒前
林深见鹿完成签到,获得积分10
5秒前
pcwang完成签到,获得积分10
7秒前
暴躁的黎云完成签到,获得积分10
7秒前
好好好发布了新的文献求助10
8秒前
丿淘丶Tao丨完成签到,获得积分10
8秒前
搜集达人应助汤帅臣采纳,获得10
8秒前
董金金发布了新的文献求助10
9秒前
9秒前
JUN完成签到,获得积分10
10秒前
zss发布了新的文献求助10
10秒前
烂漫成仁完成签到,获得积分10
10秒前
11秒前
未青易完成签到 ,获得积分10
11秒前
呵呵贺哈发布了新的文献求助10
11秒前
11秒前
大个应助煎饼采纳,获得10
12秒前
CodeCraft应助llb采纳,获得10
12秒前
Wwww完成签到 ,获得积分10
13秒前
希望天下0贩的0应助ikki采纳,获得10
14秒前
14秒前
淡定雁开完成签到,获得积分10
14秒前
happyyuyu发布了新的文献求助10
15秒前
科目三应助不是二次元采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4690190
求助须知:如何正确求助?哪些是违规求助? 4062316
关于积分的说明 12560350
捐赠科研通 3759943
什么是DOI,文献DOI怎么找? 2076535
邀请新用户注册赠送积分活动 1105263
科研通“疑难数据库(出版商)”最低求助积分说明 984007