Multi-Strategy Enhancde Slime Mould Algorithm for Optimization Problems

黏菌 计算机科学 算法 数学优化 数学 生物 细胞生物学
作者
Z. H. Duan,Xuezhong Qian,Wei Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2025.3527509
摘要

The slime mould algorithm (SMA) simulates the mechanism by which slime moulds optimize paths through chemical signaling and morphological changes, enabling efficient exploration and exploitation of the solution space. While SMA is simple and flexible, it faces challenges such as slow convergence and a tendency to become trapped in local optima. To address these limitations, this paper introduces an enhanced algorithm that integrates bloch sphere-based Elite Population Initialization with an adaptive search operator strategy based on cauchy inverse cumulative distribution(QCMSMA). The proposed algorithm employs a Bloch sphere-based elite population initialization strategy, which utilizes quantum state mapping to enhance diversity and incorporates elite selection to guarantee high-quality initial solutions, ultimately improving optimization performance. An adaptive search operator leveraging the Cauchy inverse cumulative distribution is employed to dynamically adjust step sizes, improving exploration and efficiency. Additionally, a local Gaussian perturbation mutation strategy is incorporated to mitigate the risk of premature convergence to local optima.The QCMSMA algorithm was rigorously evaluated using 23 benchmark functions and the CEC2017 test suite. Comparative analysis against several well-known optimization algorithms was performed, accompanied by statistical assessments using theWilcoxon rank-sum test and Friedman ranking analysis. Experimental results indicate that QCMSMA consistently outperforms its counterparts in terms of optimization efficiency, convergence speed, and stability. Finally, the algorithm was applied to a real-world unmanned aerial vehicle(UAV) path planning problem, demonstrating its practical engineering applicability and effectiveness in solving complex optimization tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噔噔噔噔发布了新的文献求助10
刚刚
1秒前
铅笔完成签到,获得积分10
1秒前
1秒前
yuekun发布了新的文献求助10
1秒前
英姑应助focco采纳,获得10
1秒前
1秒前
丁真爱学习完成签到 ,获得积分10
2秒前
呜呜发布了新的文献求助10
2秒前
shizaibide1314完成签到,获得积分10
3秒前
加拿大一枝黄花完成签到,获得积分10
3秒前
nn发布了新的文献求助10
5秒前
蓝色幻想发布了新的文献求助10
5秒前
cyr发布了新的文献求助30
5秒前
5秒前
科研通AI5应助灵巧的尔芙采纳,获得10
6秒前
张翼德完成签到,获得积分10
6秒前
贝壳发布了新的文献求助10
6秒前
yxy关闭了yxy文献求助
8秒前
李健应助愤怒的雨莲采纳,获得10
8秒前
8秒前
10秒前
Xiang发布了新的文献求助10
10秒前
10秒前
无花果应助LSY采纳,获得10
10秒前
狗熊也应助初遇之时最暖采纳,获得20
10秒前
10秒前
芋泥泥泥完成签到 ,获得积分10
12秒前
12秒前
philophysics发布了新的文献求助10
12秒前
cui发布了新的文献求助10
13秒前
wanci应助xh采纳,获得10
14秒前
yi发布了新的文献求助10
15秒前
RetchieLi发布了新的文献求助10
15秒前
高高犀牛发布了新的文献求助30
15秒前
16秒前
科研通AI2S应助冲锋导弹采纳,获得10
17秒前
17秒前
17秒前
yy完成签到,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811134
求助须知:如何正确求助?哪些是违规求助? 3355447
关于积分的说明 10376297
捐赠科研通 3072298
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811595
科研通“疑难数据库(出版商)”最低求助积分说明 766700