Flexible and Hierarchical Structured Alumina Boron Nitride Nanofibrous Aerogel for Thermal Superinsulation in Extreme Conditions

氮化硼 气凝胶 材料科学 复合材料 热的 化学 物理 有机化学 气象学
作者
Jianfei Liu,Xiaolong An,Yang Yang,Hui Yang,Li Sun,Wan Rong,Xiaocheng Li,Yu Zhen Dong
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (22): 25954-25962 被引量:1
标识
DOI:10.1021/acsanm.4c05113
摘要

Achieving effective thermal superinsulation at extremely high temperatures is paramount for aerospace, industrial operations, and societal advancements. Boron nitride (BN) aerogels, composed of nanoscale BN building units, are ultralight ceramics known for their excellent thermal and chemical stability, especially their high-temperature oxidation resistance. However, their vulnerability to oxidation and brittleness under specific high-temperature conditions poses challenges. This study introduces a practical and scalable method to synthesize alumina ceramic BN aerogels (ACBNAs), which offer flexibility, are lightweight, and offer exceptional thermal insulation. The preparation of an aerogel was accomplished through the use of the highly concentrated emulsion template method. This method involved dispersing and intertwining alumina fibers and boron nitride fibers within an emulsion. Polyvinyl acetate (PVA) was utilized as a self-sacrifice polymer agent to rearrange the structure. he distinctive hierarchical cellular architecture of these ceramic nanofibrous aerogels imparts an ultralow density of ∼25 mg cm–3, an ultralow thermal conductivity of 26.17 mW m–1 K–1, and remarkable robustness across a wide temperature range from −196 to 1200 °C, with the capability for large-scale shape manipulation. Moreover, when ACBNA is used as a thermal insulation layer, in conjunction with Al foil, which acts as both a low-infrared-emission and high-infrared-reflection layer, ACBNA forms a composite structure capable of effectively concealing high-temperature targets. These advantageous multifaceted features position ACBNA as ideal for thermal insulation, thereby broadening its potential applications to harsh environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助103921wjk采纳,获得10
1秒前
liulu完成签到 ,获得积分10
1秒前
故意的青荷完成签到,获得积分20
5秒前
一一应助水若琳采纳,获得10
7秒前
慕青应助猪猪hero采纳,获得10
7秒前
9秒前
14秒前
15秒前
SciGPT应助科研通管家采纳,获得10
16秒前
16秒前
在水一方应助科研通管家采纳,获得30
16秒前
田様应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
jinbozhang应助科研通管家采纳,获得10
16秒前
科研通AI5应助马户的崛起采纳,获得30
16秒前
17秒前
千冬完成签到,获得积分10
19秒前
22秒前
加薪完成签到,获得积分10
23秒前
RickySong发布了新的文献求助10
24秒前
lzj发布了新的文献求助10
24秒前
小二郎应助大侦探皮卡丘采纳,获得10
27秒前
prxMatcha发布了新的文献求助100
27秒前
27秒前
灰木发布了新的文献求助10
29秒前
31秒前
巧可脆脆发布了新的文献求助10
32秒前
慕青应助123456采纳,获得10
32秒前
32秒前
SciGPT应助d1021采纳,获得10
34秒前
lin发布了新的文献求助10
35秒前
1111完成签到,获得积分10
35秒前
36秒前
宁幼萱完成签到,获得积分10
36秒前
西米发布了新的文献求助10
37秒前
38秒前
研友_VZG7GZ应助巧可脆脆采纳,获得10
40秒前
科研通AI5应助256采纳,获得10
40秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826385
求助须知:如何正确求助?哪些是违规求助? 3368775
关于积分的说明 10452191
捐赠科研通 3088226
什么是DOI,文献DOI怎么找? 1699038
邀请新用户注册赠送积分活动 817255
科研通“疑难数据库(出版商)”最低求助积分说明 770130