A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves

目标检测 计算机科学 帧速率 人工智能 帧(网络) 推论 深度学习 模式识别(心理学) 计算机视觉 机器学习 电信
作者
Akram Abdullah,Gehad Abdullah Amran,S. M. Ahanaf Tahmid,Amerah Alabrah,Ali A. AL-Bakhrani,Abdulaziz Ali
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 1593-1593 被引量:3
标识
DOI:10.3390/agronomy14071593
摘要

This study introduces a You Only Look Once (YOLO) model for detecting diseases in tomato leaves, utilizing YOLOV8s as the underlying framework. The tomato leaf images, both healthy and diseased, were obtained from the Plant Village dataset. These images were then enhanced, implemented, and trained using YOLOV8s using the Ultralytics Hub. The Ultralytics Hub provides an optimal setting for training YOLOV8 and YOLOV5 models. The YAML file was carefully programmed to identify sick leaves. The results of the detection demonstrate the resilience and efficiency of the YOLOV8s model in accurately recognizing unhealthy tomato leaves, surpassing the performance of both the YOLOV5 and Faster R-CNN models. The results indicate that YOLOV8s attained the highest mean average precision (mAP) of 92.5%, surpassing YOLOV5’s 89.1% and Faster R-CNN’s 77.5%. In addition, the YOLOV8s model is considerably smaller and demonstrates a significantly faster inference speed. The YOLOV8s model has a significantly superior frame rate, reaching 121.5 FPS, in contrast to YOLOV5’s 102.7 FPS and Faster R-CNN’s 11 FPS. This illustrates the lack of real-time detection capability in Faster R-CNN, whereas YOLOV5 is comparatively less efficient than YOLOV8s in meeting these needs. Overall, the results demonstrate that the YOLOV8s model is more efficient than the other models examined in this study for object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wu发布了新的文献求助10
刚刚
1秒前
和风完成签到 ,获得积分20
1秒前
CodeCraft应助SHI采纳,获得10
1秒前
快乐的冷安完成签到,获得积分20
1秒前
2秒前
小王发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
zxy完成签到,获得积分10
4秒前
科研通AI5应助66采纳,获得10
4秒前
江彪发布了新的文献求助10
5秒前
cookingmouse发布了新的文献求助10
5秒前
zimo完成签到,获得积分10
6秒前
哈哈完成签到,获得积分10
6秒前
韩霖发布了新的文献求助10
6秒前
6秒前
安静幻桃完成签到,获得积分10
6秒前
6秒前
CodeCraft应助Wu采纳,获得10
6秒前
6秒前
7秒前
小王完成签到,获得积分10
7秒前
Mansis发布了新的文献求助10
7秒前
传奇3应助cc采纳,获得10
8秒前
yuky完成签到 ,获得积分10
8秒前
yby发布了新的文献求助10
9秒前
风往北吹完成签到 ,获得积分10
9秒前
ghost202发布了新的文献求助10
10秒前
碳酸氢钠完成签到,获得积分10
10秒前
上官若男应助duan采纳,获得10
11秒前
科研通AI5应助小全采纳,获得30
11秒前
12秒前
无名完成签到,获得积分10
13秒前
HHXYY完成签到 ,获得积分10
13秒前
研友_P85KMn完成签到,获得积分10
15秒前
领导范儿应助我爱学术采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812981
求助须知:如何正确求助?哪些是违规求助? 3357430
关于积分的说明 10386520
捐赠科研通 3074600
什么是DOI,文献DOI怎么找? 1688950
邀请新用户注册赠送积分活动 812395
科研通“疑难数据库(出版商)”最低求助积分说明 767088