Addressing challenges in industrial pick and place: A deep learning-based 6 Degrees-of-Freedom pose estimation solution

姿势 人工智能 计算机科学 卷积神经网络 三维姿态估计 过程(计算) 关节式人体姿态估计 机器人 管道(软件) 任务(项目管理) 对象(语法) 机器学习 深度学习 贴片设备 面子(社会学概念) 自由度(物理和化学) 目标检测 计算机视觉 人工神经网络 模式识别(心理学) 工程类 社会科学 社会学 程序设计语言 操作系统 物理 系统工程 量子力学
作者
Elena Govi,Davide Sapienza,Samuele Toscani,Ivan Cotti,Giorgia Franchini,Marko Bertogna
出处
期刊:Computers in Industry [Elsevier]
卷期号:161: 104130-104130 被引量:1
标识
DOI:10.1016/j.compind.2024.104130
摘要

Object picking is a fundamental, long-lasting, and yet unsolved problem in industrial applications. To complete it, 6 Degrees-of-Freedom pose estimation can be crucial. This task, easy for humans, is a challenge for machines as it involves multiple intelligent processes (for example object detection, recognition, pose prediction). Pose estimation has recently made huge steps forward, due to the advent of Deep Learning. However, in real-world applications it is not trivial to compute it: each use-case needs an annotated dataset and a model robust enough to face its specific challenges. In this paper, we present a comprehensive investigation focused on a specific use-case: the picking of four industrial objects by a collaborative robot's arm, addressing challenges related to reflective textures and pose ambiguities of heterogeneous shapes. Thus, Artificial Intelligence is crucial in this process, utilizing Convolutional Neural Networks to discern an object's pose by extracting hierarchical features from a single image. In detail, we propose a new synthetic dataset of industrial objects and a fine-tuning method to close the sim-to-real domain gap. In addition, we improved an existing pipeline for pose estimation and introduced a new version of an existing method, based on Convolutional Neural Networks. Finally, extensive experiments were conducted with a Universal Robot UR5e. Results show our strategy achieves good performances with an average successful picking rate of 75% on these new objects. Considering the lack of available datasets for pose estimation, coupled with the significant time and labor required for annotating new images, we contribute to the scientific community by providing a comprehensive dataset, and the associated generation and estimation pipelines.1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuanheqi发布了新的文献求助20
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Mic发布了新的文献求助10
5秒前
哈哈哈完成签到,获得积分10
5秒前
YuGe完成签到,获得积分10
6秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
谭茹茵完成签到 ,获得积分10
8秒前
10秒前
张泽轩完成签到,获得积分10
10秒前
小二郎应助粗暴的大门采纳,获得10
10秒前
品品完成签到,获得积分10
10秒前
自觉绿草完成签到,获得积分10
11秒前
小二郎应助CA采纳,获得10
13秒前
TingtingGZ发布了新的文献求助10
13秒前
完美世界应助Mic采纳,获得10
15秒前
风雨发布了新的文献求助10
15秒前
璨澄完成签到 ,获得积分0
15秒前
15秒前
星辰大海应助cx采纳,获得10
15秒前
善学以致用应助黑马采纳,获得10
16秒前
16秒前
sylus完成签到,获得积分20
17秒前
zjy完成签到,获得积分10
18秒前
20秒前
20秒前
打打应助zhu采纳,获得10
20秒前
20秒前
20秒前
jungwoo123完成签到,获得积分10
20秒前
21秒前
嘿嘿发布了新的文献求助10
21秒前
瘦瘦安蕾完成签到 ,获得积分10
22秒前
oTo发布了新的文献求助10
27秒前
热情高跟鞋完成签到,获得积分10
27秒前
鳗鱼忆山完成签到 ,获得积分10
27秒前
28秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003