Assessing a machine learning-based downscaling framework for obtaining 1km daily precipitation from GPM data

缩小尺度 环境科学 全球降水量测量 降水 定量降水量估算 气象学 归一化差异植被指数 遥感 气候学 气候变化 地理 地质学 海洋学
作者
Tao Sun,Nana Yan,Weiwei Zhu,Qifeng Zhuang
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (17): e36368-e36368 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e36368
摘要

Hydro-meteorological monitoring through satellites in arid and semi-arid regions is constrained by the coarse spatial resolution of precipitation data, which impedes detailed analyses. The objective of this study is to evaluate various machine learning techniques for developing a downscaling framework that generates high spatio-temporal resolution precipitation products. Focusing on the Hai River Basin, we evaluated three machine learning approaches-Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Back Propagation (BP) neural networks. These methods integrate environmental variables including land surface temperature (LST), Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), Precipitable Water Vapor (PWV), and albedo, to downscale the 0.1° spatial resolution Global Precipitation Measurement (GPM) product to a 1 km resolution. We further refined the results with residual correction and calibration using terrestrial rain gauge data. Subsequently, utilizing the 1 km annual precipitation, we employed the moving average window method to derive monthly and daily precipitation. The results demonstrated that the XGBoost method, calibrated with Geographical Difference Analysis (GDA) and Kriging spatial interpolation, proved to be the most accurate, achieving a Mean Absolute Error (MAE) of 58.40 mm for the annual product, representing a 14 % improvement over the original data. The monthly and daily products achieved MAE values of 11.61 mm and 1.79 mm, respectively, thus enhancing spatial resolution while maintaining accuracy comparable to the original product. In the Hai River Basin, key factors including longitude, latitude, DEM, LST_night, and PWV demonstrated greater importance and stability than other factors, thereby enhancing the model's precipitation prediction capabilities. This study provides a comprehensive assessment of the annual, monthly, and daily high-temporal and high-spatial resolution downscaling processes of precipitation, serving as an important reference for hydrology and related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
1秒前
zoey发布了新的文献求助10
2秒前
3秒前
4秒前
淡淡尔烟完成签到,获得积分20
4秒前
5秒前
6秒前
LK完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助奈布采纳,获得10
7秒前
SciGPT应助Pendragon采纳,获得10
8秒前
9秒前
bz发布了新的文献求助10
9秒前
笑啦啦完成签到,获得积分10
10秒前
共享精神应助zoey采纳,获得10
10秒前
11秒前
12秒前
小二郎应助Ray采纳,获得10
12秒前
zxtwins发布了新的文献求助100
13秒前
jjj完成签到,获得积分10
13秒前
zhy发布了新的文献求助10
15秒前
爆米花应助我的小k8采纳,获得10
15秒前
16秒前
bz完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
美丽的又菡完成签到,获得积分20
19秒前
橘子完成签到,获得积分20
19秒前
脑洞疼应助默默采纳,获得10
20秒前
朱凯洋发布了新的文献求助10
20秒前
笨笨十三完成签到 ,获得积分10
21秒前
RenLuna关注了科研通微信公众号
22秒前
22秒前
欢呼小松鼠完成签到 ,获得积分10
22秒前
真金小子完成签到 ,获得积分10
22秒前
xixicheng完成签到,获得积分10
22秒前
23秒前
Benchen完成签到 ,获得积分10
23秒前
体贴忆之发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802223
求助须知:如何正确求助?哪些是违规求助? 3348011
关于积分的说明 10335830
捐赠科研通 3063897
什么是DOI,文献DOI怎么找? 1682293
邀请新用户注册赠送积分活动 807968
科研通“疑难数据库(出版商)”最低求助积分说明 763997