清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel interpretable deep learning-based computational framework designed synthetic enhancers with broad cross-species activity

生物 增强子 计算生物学 遗传学 基因 转录因子
作者
Zhaohong Li,Yuanyuan Zhang,Bo Peng,Shenghua Qin,Qian Zhang,Yun Chen,Choulin Chen,Yongzhou Bao,Yuqi Zhu,Hong Yi,Binghua Liu,Qian Liu,Lingna Xu,Xi Chen,Xinhao Ma,Hongyan Wang,Long Xie,Yilong Yao,Biao Deng,Jiaying Li
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:52 (21): 13447-13468 被引量:6
标识
DOI:10.1093/nar/gkae912
摘要

Abstract Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design. Proficient in uncovering subtle and intricate patterns within extensive enhancer screening data, DREAM achieves cutting-edge sequence-based enhancer activity prediction and highlights critical sequence features implicating strong enhancer activity. Leveraging DREAM, we have engineered enhancers that surpass the potency of the strongest enhancer within the Drosophila genome by approximately 3.6-fold. Remarkably, these synthetic enhancers exhibited conserved functionality across species that have diverged more than billion years, indicating that DREAM was able to learn highly conserved enhancer regulatory grammar. Additionally, we designed silencers and cell line-specific enhancers using DREAM, demonstrating its versatility. Overall, our study not only introduces an interpretable approach for enhancer design but also lays out a general framework applicable to the design of other types of cis-regulatory elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jekyll发布了新的文献求助10
7秒前
16秒前
17秒前
jekyll发布了新的文献求助30
23秒前
忘忧Aquarius完成签到,获得积分10
34秒前
48秒前
情怀应助sinan采纳,获得30
49秒前
wsj完成签到,获得积分10
53秒前
可夫司机完成签到 ,获得积分10
55秒前
Heart_of_Stone完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
吴彦祖应助wsj采纳,获得10
1分钟前
sinan发布了新的文献求助30
1分钟前
1分钟前
kzxhql发布了新的文献求助10
1分钟前
creep2020完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
kzxhql完成签到,获得积分10
1分钟前
Thunnus001完成签到 ,获得积分10
1分钟前
缥缈书本完成签到 ,获得积分10
1分钟前
AbdoSpace发布了新的文献求助30
1分钟前
1分钟前
1分钟前
喜悦的唇彩完成签到,获得积分10
1分钟前
1分钟前
叶先生完成签到 ,获得积分10
2分钟前
2分钟前
勤劳的渊思完成签到,获得积分20
2分钟前
楚楚完成签到 ,获得积分10
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
Hello应助唠叨的半双采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xiaowangwang完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488716
求助须知:如何正确求助?哪些是违规求助? 4587443
关于积分的说明 14413972
捐赠科研通 4518933
什么是DOI,文献DOI怎么找? 2476144
邀请新用户注册赠送积分活动 1461587
关于科研通互助平台的介绍 1434635