Predicting significant wave height in the South China Sea using the SAC-ConvLSTM model

中国 地质学 大地测量学 地理 考古
作者
Boyang Hou,H. S. Fu,Xin Li,Tao Song,Zhiyuan Zhang
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmars.2024.1424714
摘要

Introduction The precise forecasting of Significant wave height(SWH) is vital to ensure the safety and efficiency of aquatic activities such as ocean engineering, shipping, and fishing. Methods This paper proposes a deep learning model named SAC-ConvLSTM to perform 24-hour prediction with the SWH in the South China Sea. The long-term prediction capability of the model is enhanced by using the attention mechanism and context vectors. The prediction ability of the model is evaluated by mean absolute error (MAE), root mean square error (RMSE), mean square error (MSE), and Pearson correlation coefficient (PCC). Results The experimental results show that the optimal input sequence length for the model is 12. Starting from 12 hours, the SAC-ConvLSTM model consistently outperforms other models in predictive performance. For the 24-hour prediction, this model achieves RMSE, MAE, and PCC values of 0.2117 m, 0.1083 m, and 0.9630, respectively. In addition, the introduction of wind can improve the accuracy of wave prediction. The SAC-ConvLSTM model also has good prediction performance compared to the ConvLSTM model during extreme weather, especially in coastal areas. Discussion This paper presents a 24-hour prediction of SWH in the South China Sea. Through comparative validation, the SAC-ConvLSTM model outperforms other models. The inclusion of wind data enhances the model's predictive capability. This model also performs well under extreme weather conditions. In physical oceanography, variables related to SWH include not only wind but also other factors such as mean wave period and sea surface air pressure. In the future, additional variables can be incorporated to further improve the model's predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助暖暖采纳,获得10
1秒前
我是老大应助温良采纳,获得10
4秒前
10秒前
10秒前
blind完成签到,获得积分10
11秒前
希望天下0贩的0应助kk采纳,获得10
11秒前
mayimo发布了新的文献求助10
12秒前
汛钥发布了新的文献求助20
12秒前
整齐小猫咪完成签到,获得积分10
12秒前
13秒前
小马甲应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
怕孤独的青文关注了科研通微信公众号
16秒前
Ava应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
17秒前
脑洞疼应助zzw采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
18秒前
科研通AI5应助lanlan采纳,获得10
18秒前
xy完成签到 ,获得积分20
18秒前
萧衍发布了新的文献求助10
18秒前
hhhh发布了新的文献求助10
18秒前
19秒前
卡洛完成签到,获得积分10
20秒前
guositing完成签到,获得积分10
20秒前
mayimo完成签到,获得积分10
21秒前
打打应助韭菜盒子采纳,获得10
22秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800140
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10325049
捐赠科研通 3061931
什么是DOI,文献DOI怎么找? 1680614
邀请新用户注册赠送积分活动 807158
科研通“疑难数据库(出版商)”最低求助积分说明 763509