Action tremor features discovery for essential tremor and Parkinson's disease with explainable multilayer BiLSTM

原发性震颤 计算机科学 人工智能 特征(语言学) 任务(项目管理) 相关性(法律) 动作(物理) 机器学习 模式识别(心理学) 物理医学与康复 医学 物理 哲学 语言学 管理 政治学 法学 经济 量子力学
作者
Yu Xuan Teo,Rui En Lee,Surya G. Nurzaman,Chee Pin Tan,Ping Yi Chan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:180: 108957-108957 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108957
摘要

The tremors of Parkinson's disease (PD) and essential tremor (ET) are known to have overlapping characteristics that make it complicated for clinicians to distinguish them. While deep learning is robust in detecting features unnoticeable to humans, an opaque trained model is impractical in clinical scenarios as coincidental correlations in the training data may be used by the model to make classifications, which may result in misdiagnosis. This work aims to overcome the aforementioned challenge of deep learning models by introducing a multilayer BiLSTM network with explainable AI (XAI) that can better explain tremulous characteristics and quantify the respective discovered important regions in tremor differentiation. The proposed network classifies PD, ET, and normal tremors during drinking actions and derives the contribution from tremor characteristics, (i.e., time, frequency, amplitude, and actions) utilized in the classification task. The analysis shows that the XAI-BiLSTM marks the regions with high tremor amplitude as important in classification, which is verified by a high correlation between relevance distribution and tremor displacement amplitude. The XAI-BiLSTM discovered that the transition phases from arm resting to lifting (during the drinking cycle) is the most important action to classify tremors. Additionally, the XAI-BiLSTM reveals frequency ranges that only contribute to the classification of one tremor class, which may be the potential distinctive feature to overcome the overlapping frequencies problem. By revealing critical timing and frequency patterns unique to PD and ET tremors, this proposed XAI-BiLSTM model enables clinicians to make more informed classifications, potentially reducing misclassification rates and improving treatment outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩芊芊发布了新的文献求助10
刚刚
sdh7941发布了新的文献求助10
刚刚
zm完成签到,获得积分10
2秒前
张凤发布了新的文献求助30
2秒前
4秒前
zm发布了新的文献求助10
5秒前
pnxl4664发布了新的文献求助10
5秒前
6秒前
yyx完成签到 ,获得积分10
7秒前
科研通AI6应助adhdff采纳,获得10
7秒前
倩倩芊芊完成签到,获得积分10
9秒前
隐千完成签到,获得积分10
10秒前
靓丽藏花发布了新的文献求助10
11秒前
11秒前
12秒前
sdh7941完成签到,获得积分20
13秒前
Beauty完成签到,获得积分10
13秒前
张凤发布了新的文献求助10
14秒前
14秒前
14秒前
XIaoLuzi发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
轨迹发布了新的文献求助10
17秒前
洛可发布了新的文献求助10
18秒前
SciGPT应助XIaoLuzi采纳,获得10
20秒前
逍遥发布了新的文献求助10
21秒前
堪曼凝完成签到,获得积分10
21秒前
cola发布了新的文献求助10
21秒前
orixero应助江海下百川采纳,获得10
23秒前
23秒前
田様应助Lyu采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
HoHo发布了新的文献求助20
25秒前
TXINY完成签到,获得积分10
27秒前
27秒前
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4220481
求助须知:如何正确求助?哪些是违规求助? 3754163
关于积分的说明 11803476
捐赠科研通 3417926
什么是DOI,文献DOI怎么找? 1875889
邀请新用户注册赠送积分活动 929514
科研通“疑难数据库(出版商)”最低求助积分说明 838139