A qualitative study of improving megavoltage computed tomography image quality and maintaining dose accuracy using cycleGAN‐based image synthesis

断层治疗 图像质量 核医学 迭代重建 剂量学 信噪比(成像) 人工智能 计算机科学 医学 放射治疗 放射科 图像(数学) 电信
作者
Tie Lv,Chuanbin Xie,Yihang Zhang,Yaoying Liu,Gaolong Zhang,Baolin Qu,Wei Zhao,Shouping Xu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 394-406 被引量:11
标识
DOI:10.1002/mp.16633
摘要

Abstract Background Due to inconsistent positioning, tumor shrinking, and weight loss during fractionated treatment, the initial plan was no longer appropriate after a few fractional treatments, and the patient will require adaptive helical tomotherapy (HT) to overcome the issue. Patients are scanned with megavoltage computed tomography (MVCT) before each fractional treatment, which is utilized for patient setup and provides information for dose reconstruction. However, the low contrast and high noise of MVCT make it challenging to delineate treatment targets and organs at risk (OAR). Purpose This study developed a deep‐learning‐based approach to generate high‐quality synthetic kilovoltage computed tomography (skVCT) from MVCT and meet clinical dose requirements. Methods Data from 41 head and neck cancer patients were collected; 25 (2995 slices) were used for training, and 16 (1898 slices) for testing. A cycle generative adversarial network (cycleGAN) based on attention gate and residual blocks was used to generate MVCT‐based skVCT. For the 16 patients, kVCT‐based plans were transferred to skVCT images and electron density profile‐corrected MVCT images to recalculate the dose. The quantitative indices and clinically relevant dosimetric metrics, including the mean absolute error (MAE), structural similarity index measure (SSIM), peak signal‐to‐noise ratio (PSNR), gamma passing rates, and dose‐volume‐histogram (DVH) parameters ( D max , D mean , D min ), were used to assess the skVCT images. Results The MAE, PSNR, and SSIM of MVCT were 109.6 ± 12.3 HU, 27.5 ± 1.1 dB, and 91.9% ± 1.7%, respectively, while those of skVCT were 60.6 ± 9.0 HU, 34.0 ± 1.9 dB, and 96.5% ± 1.1%. The image quality and contrast were enhanced, and the noise was reduced. The gamma passing rates improved from 98.31% ± 1.11% to 99.71% ± 0.20% (2 mm/2%) and 99.77% ± 0.18% to 99.98% ± 0.02% (3 mm/3%). No significant differences ( p > 0.05) were observed in DVH parameters between kVCT and skVCT. Conclusion With training on a small data set (2995 slices), the model successfully generated skVCT with improved image quality, and the dose calculation accuracy was similar to that of MVCT. MVCT‐based skVCT can increase treatment accuracy and offer the possibility of implementing adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Usin采纳,获得10
2秒前
zzzz发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
5秒前
乐乐应助毅诚菌采纳,获得10
6秒前
7秒前
7秒前
zzzz完成签到,获得积分10
8秒前
骨科小迪完成签到,获得积分10
8秒前
wzw完成签到,获得积分10
9秒前
9秒前
milly发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
yuyu发布了新的文献求助10
10秒前
乐观紫霜发布了新的文献求助10
10秒前
游唐发布了新的文献求助20
10秒前
路会飞发布了新的文献求助10
12秒前
13秒前
小二郎应助天真的灵采纳,获得10
14秒前
大家好完成签到 ,获得积分10
14秒前
bkagyin应助机灵的芒果采纳,获得10
14秒前
雪花糕完成签到 ,获得积分10
15秒前
Li发布了新的文献求助10
16秒前
维夏Z发布了新的文献求助10
16秒前
16秒前
科目三应助yuyu采纳,获得10
17秒前
研友_VZG7GZ应助Cxu采纳,获得10
17秒前
喵脆角关注了科研通微信公众号
18秒前
18秒前
19秒前
LG发布了新的文献求助10
19秒前
西瓜珺完成签到,获得积分20
20秒前
21秒前
21秒前
22秒前
XiuyaRen发布了新的文献求助10
22秒前
WQ完成签到,获得积分10
23秒前
ws发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627241
求助须知:如何正确求助?哪些是违规求助? 4713226
关于积分的说明 14961499
捐赠科研通 4784040
什么是DOI,文献DOI怎么找? 2554754
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476655