Development of fault diagnosis for nuclear power plant using deep learning and infrared sensor equipped UAV

计算机科学 深度学习 人工智能 组分(热力学) 核电站 断层(地质) 卷积神经网络 故障检测与隔离 核能 人工神经网络 发电站 模式识别(心理学) 实时计算 工程类 执行机构 核物理学 地质学 地震学 物理 电气工程 热力学 生物 生态学
作者
Ik Jae Jin,Do Yeong Lim,In Cheol Bang
出处
期刊:Annals of Nuclear Energy [Elsevier BV]
卷期号:181: 109577-109577
标识
DOI:10.1016/j.anucene.2022.109577
摘要

• This study proposes a method for diagnosing a power plant composed of numerous components based on deep learning using a UAV. • A single inspection instrument can facilitate data transmission, and cost-effectiveness. • The proposed method can more intuitively diagnose and recognize the component. • This method showed the overall mean average precision of 99.13% with real time. Fault component detection is necessary for safety and maintenance in large-scale industrial fields including nuclear power plants. Therefore, this study proposes a method for diagnosing a power plant composed of numerous components based on deep learning using a UAV with an IR sensor and a camera. The proposed method could diagnose the components and recognize the fault component in real time. In this study, a thermal–hydraulic integral effect test facility, which is a scaled-down nuclear power plant, is utilized considering the nuclear power plant. The database for the application of deep learning was performed by combining an IR intensity map and general image to enhance the performance of component classification and fault detection. Deep learning was applied using object detection and classification methods based on convolutional neural networks (CNNs) that are effective for image processing. As a result, this technology can diagnose the multi-component by a single measurement instrument. The optimal performance of component classification and fault detection was 55.9 ms per 16 batches, demonstrating a mean average precision (mAP) of 0.9913. This technology could be applied to various industries as a comprehensive component condition monitoring method for operating efficiency and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
君君发布了新的文献求助10
3秒前
3秒前
乏味发布了新的文献求助10
6秒前
li完成签到,获得积分10
7秒前
8秒前
9秒前
Neko发布了新的文献求助10
12秒前
13秒前
大个应助飞儿随缘采纳,获得10
14秒前
yiyizhou发布了新的文献求助10
14秒前
14秒前
田様应助rmbsLHC采纳,获得10
15秒前
16秒前
咩咩发布了新的文献求助10
19秒前
背后的白安完成签到,获得积分10
20秒前
领导范儿应助li采纳,获得10
20秒前
科研通AI5应助江峰采纳,获得10
21秒前
土匪猫发布了新的文献求助10
21秒前
爆米花应助lixiaolu采纳,获得10
22秒前
一杯晨汁完成签到 ,获得积分10
22秒前
传奇3应助光轮2000采纳,获得10
24秒前
25秒前
韵寒禾香完成签到,获得积分10
26秒前
xiaxiao应助研友_LJblvL采纳,获得100
27秒前
隐形曼青应助Jackcaosky采纳,获得10
29秒前
29秒前
Wonder罗发布了新的文献求助10
31秒前
31秒前
自觉的溪灵应助夜航鸟采纳,获得50
33秒前
35秒前
1MENINA1完成签到 ,获得积分10
35秒前
云魂完成签到,获得积分10
36秒前
土匪猫完成签到,获得积分10
37秒前
生信精准科研完成签到,获得积分10
38秒前
阿莫仙发布了新的文献求助10
38秒前
ddy完成签到,获得积分10
40秒前
江峰发布了新的文献求助10
42秒前
Owen应助咩咩采纳,获得10
43秒前
英俊的铭应助crowd_lpy采纳,获得10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811300
求助须知:如何正确求助?哪些是违规求助? 3355715
关于积分的说明 10377349
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811700
科研通“疑难数据库(出版商)”最低求助积分说明 766762