VenusMutHub: A systematic evaluation of protein mutation effect predictors on small-scale experimental data

比例(比率) 计算生物学 统计 计算机科学 医学 数据挖掘 生物 数学 地理 地图学
作者
Liang Zhang,Hua Pang,Chenghao Zhang,Song Li,Yang Tan,Fan Jiang,Mingchen Li,Yuanxi Yu,Ziyi Zhou,Banghao Wu,Bingxin Zhou,Hao Liu,Pan Tan,Liang Hong
出处
期刊:Acta Pharmaceutica Sinica B [Elsevier]
卷期号:15 (5): 2454-2467 被引量:3
标识
DOI:10.1016/j.apsb.2025.03.028
摘要

In protein engineering, while computational models are increasingly used to predict mutation effects, their evaluations primarily rely on high-throughput deep mutational scanning (DMS) experiments that use surrogate readouts, which may not adequately capture the complex biochemical properties of interest. Many proteins and their functions cannot be assessed through high-throughput methods due to technical limitations or the nature of the desired properties, and this is particularly true for the real industrial application scenario. Therefore, the desired testing datasets, will be small-size (∼10-100) experimental data for each protein, and involve as many proteins as possible and as many properties as possible, which is, however, lacking. Here, we present VenusMutHub, a comprehensive benchmark study using 905 small-scale experimental datasets curated from published literature and public databases, spanning 527 proteins across diverse functional properties including stability, activity, binding affinity, and selectivity. These datasets feature direct biochemical measurements rather than surrogate readouts, providing a more rigorous assessment of model performance in predicting mutations that affect specific molecular functions. We evaluate 23 computational models across various methodological paradigms, such as sequence-based, structure-informed and evolutionary approaches. This benchmark provides practical guidance for selecting appropriate prediction methods in protein engineering applications where accurate prediction of specific functional properties is crucial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱科研完成签到 ,获得积分10
刚刚
123完成签到,获得积分10
刚刚
liu完成签到,获得积分10
1秒前
幸福诗槐完成签到,获得积分10
2秒前
mw完成签到,获得积分10
2秒前
无花果应助yang采纳,获得10
2秒前
2秒前
Xx完成签到 ,获得积分10
2秒前
3秒前
3秒前
LYSM给LYSM的求助进行了留言
3秒前
4秒前
hzk发布了新的文献求助10
5秒前
风雨霖霖发布了新的文献求助20
5秒前
mw发布了新的文献求助10
5秒前
包容仙人掌完成签到,获得积分10
6秒前
xiaoqin完成签到,获得积分10
6秒前
浮游应助123采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
DA发布了新的文献求助10
8秒前
8秒前
9秒前
咚咚糖发布了新的文献求助10
10秒前
传奇3应助豆豆哥采纳,获得10
10秒前
10秒前
轻松的水壶完成签到 ,获得积分10
10秒前
任性醉山发布了新的文献求助10
12秒前
12秒前
土老魔发布了新的文献求助10
12秒前
13秒前
李洋完成签到,获得积分20
13秒前
Hina完成签到,获得积分10
14秒前
LMY完成签到 ,获得积分10
14秒前
雪山摩卡完成签到,获得积分10
15秒前
Unbelievable完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002