亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiview Representation Learning via Information-Theoretic Optimization

代表(政治) 计算机科学 人工智能 人机交互 理论计算机科学 认知科学 心理学 政治学 政治 法学
作者
Weiqing Yan,S.-Z. Yao,Chang Tang,Wujie Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2025.3546660
摘要

Multiview data, characterized by rich features, are crucial in many machine learning applications. However, effectively extracting intraview features and integrating interview information present significant challenges in multiview learning (MVL). Traditional deep network-based approaches often involve learning multiple layers to derive latent. In these methods, the features of different classes are typically implicitly embedded rather than systematically organized. This lack of structure makes it challenging to explicitly map classes to independent principal subspaces in the feature space, potentially causing class overlap and confusion. Consequently, the capability of these representations to accurately capture the intrinsic structure of the data remains uncertain. In this article, we introduce an innovative multiview representation learning (MVRL) by maximizing two information-theoretic metrics: intraview coding rate reduction and interview mutual information. Specifically, in the intraview representation learning, we aim to optimize feature representations by maximizing the coding rate difference between the entire dataset and individual classes. This process expands the feature representation space while compressing the representations within each class, resulting in more compact feature representations within each viewpoint. Subsequently, we align and fuse these view-specific features through space transformation and cross-sample fusion to achieve consistent representation across multiple views. Finally, we maximize information transmission to maintain consistency and correlation among data representations across views. By maximizing mutual information between the consensus representations and view-specific representations, our method ensures that the learned representations capture more concise intrinsic features and correlations among different views, thereby enhancing the performance and generalization ability of MVL. Experiments show that the proposed methods have achieved excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
22秒前
37秒前
Qing完成签到 ,获得积分10
37秒前
体贴花卷发布了新的文献求助10
40秒前
47秒前
54秒前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
不羁的风完成签到 ,获得积分10
1分钟前
1分钟前
wanci应助腰突患者的科研采纳,获得10
1分钟前
佳佳发布了新的文献求助10
1分钟前
在水一方应助佳佳采纳,获得10
1分钟前
科研小兔发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
桐桐应助腰突患者的科研采纳,获得10
1分钟前
佳佳发布了新的文献求助10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
2分钟前
Kai完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
体贴花卷发布了新的文献求助10
2分钟前
2分钟前
体贴花卷发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
JamesPei应助体贴花卷采纳,获得10
4分钟前
4分钟前
今后应助腰突患者的科研采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651072
求助须知:如何正确求助?哪些是违规求助? 4783024
关于积分的说明 15053037
捐赠科研通 4809826
什么是DOI,文献DOI怎么找? 2572636
邀请新用户注册赠送积分活动 1528630
关于科研通互助平台的介绍 1487670