Reparameterization lightweight residual network for super-resolution of brain MR images

计算机科学 卷积(计算机科学) 残余物 人工智能 清晰 医学影像学 计算复杂性理论 特征(语言学) 深度学习 成像技术 计算机视觉 图像分辨率 图像(数学) 图像处理 计算模型 资源(消歧) 磁共振成像 模式识别(心理学) 计算资源 特征提取 图像增强 机器学习 医学诊断
作者
Yang Geng,Pingping Wang,Jinyu Cong,Xiang Li,Kunmeng Liu,Benzheng Wei
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:11 (3): 035020-035020
标识
DOI:10.1088/2057-1976/adc935
摘要

Abstract As the demand for high-resolution medical images increases, super-resolution (SR) technology becomes particularly important. In recent years, SR technology based on deep learning has achieved remarkable achievements, and its application in medical images is also growing. Brain magnetic resonance imaging (MRI), a critical tool for clinical diagnosis, often suffers from artifacts caused by long scanning times or motion, compromising diagnostic reliability. While deep learning-based SR methods have significantly improved, their computational complexity and resource demands hinder real-time applications in constrained environments. To address these challenges, this paper proposes a lightweight SR MRI model based on BSRN, combined with structural reparameterization, to enhance efficiency. During training, the model employs a multi-branch structure, integrating branches into a single 3 × 3 convolution in inference, significantly reducing computational complexity and storage requirements while retaining crucial feature information. Experimental results on the IXI dataset demonstrate superior performance, with notable improvements in image clarity and detail reconstruction, especially for noisy and blurred inputs. Compared to existing methods, the proposed approach balances lightweight design and performance and has good application potential, providing new ideas for future medical image processing technology development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7777777完成签到,获得积分10
1秒前
Ava应助袁pei采纳,获得20
1秒前
xiang完成签到,获得积分10
1秒前
1325850238发布了新的文献求助10
2秒前
2秒前
科研通AI6应助大力的白玉采纳,获得10
2秒前
2秒前
情怀应助冷酷的松思采纳,获得10
3秒前
QRX关注了科研通微信公众号
3秒前
深情大凄完成签到,获得积分20
3秒前
916应助KssW采纳,获得10
4秒前
4秒前
changrx完成签到,获得积分10
5秒前
5秒前
Lin完成签到,获得积分10
6秒前
solar完成签到,获得积分10
6秒前
lll发布了新的文献求助10
6秒前
Jeanie完成签到,获得积分10
7秒前
7秒前
一口发布了新的文献求助10
7秒前
7秒前
sunshine发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
精明的信封完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
zzzy完成签到 ,获得积分10
11秒前
ljq完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416335
求助须知:如何正确求助?哪些是违规求助? 4532651
关于积分的说明 14135629
捐赠科研通 4448510
什么是DOI,文献DOI怎么找? 2440252
邀请新用户注册赠送积分活动 1432175
关于科研通互助平台的介绍 1409727