Fire spread prediction models for surface fuels in subtropical forests of southern China

亚热带 中国南方 中国 地理 环境科学 气候学 地质学 生态学 考古 生物
作者
Junjie Xu,Zhiwei Wu,Pan Zhao,Shun Li,Guai Xie
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpaf018
摘要

Abstract Subtropical forest fires are characterized by relatively small fire areas and high frequency of occurrence, with surface fires being the primary mode of forest fires spread. There is limited research on simulating forest fire spread in subtropical regions, which hinders the development and application of appropriate fire spread models. In this study, we assess the suitability and accuracy of the Rothermel model and a Random Forest model built with experimental data for predicting the rate of spread (ROS) across different types of surface fine fuel in subtropical forests. We consider fine fuels from seven typical forest types in the subtropical region of China. A total of 288 indoor experiments were conducted to simulate the fire spread process under no-wind conditions, varying the fuel moisture content at four levels (5%, 10%, 15%, and 20%) and slope angle at four inclinations (0°, 10°, 20°, and 30°). The ROS values obtained from these experiments were used to compare and analyze the predictive accuracy of the Rothermel model, a modified Rothermel model, and the Random Forest model to determine the optimal predictive model. Our findings show: (i) The prediction of the ROS under conditions of high slope angle and low fuel moisture content is not satisfactory when directly using the Rothermel model, with a coefficient of determination (R2) of 0.795, mean absolute error (MAE) of 0.204 m·min−1, and mean relative error (MRE) of 37.7%); (ii) Both the modified Rothermel model (R2: 0.902, MAE: 0.098 m·min−1, MRE: 20.2%) and the Random Forest model (R2: 0.902, MAE: 0.074 m·min−1, MRE: 13.7%) demonstrate good predictive performance with similar accuracy; (iii) Given, its physical principles and therefore potentially increased transportability, we consider the modified Rothermel model to be the most suitable of the examined models for predicting the ROS in typical forest types of southern Jiangxi Province, China, across slopes ranging from 0° to 30°. Our research provides valuable guidance for the management and suppression of subtropical forest fires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助xr采纳,获得10
刚刚
可爱的函函应助derrickZ采纳,获得10
1秒前
4秒前
4秒前
婷婷完成签到,获得积分10
5秒前
田様应助任性的诗柳采纳,获得10
5秒前
mm完成签到,获得积分10
7秒前
8秒前
wz发布了新的文献求助10
10秒前
keal发布了新的文献求助10
12秒前
精明听芹完成签到,获得积分10
13秒前
20秒前
SciGPT应助Owen采纳,获得10
20秒前
LLL发布了新的文献求助10
22秒前
rye227应助坦率的寻双采纳,获得30
22秒前
23秒前
25秒前
尺八发布了新的文献求助10
26秒前
bigheadear给bigheadear的求助进行了留言
26秒前
arya完成签到,获得积分10
27秒前
刘小明发布了新的文献求助10
28秒前
28秒前
wuniuniu发布了新的文献求助10
30秒前
melody完成签到,获得积分10
31秒前
WL完成签到 ,获得积分10
32秒前
32秒前
32秒前
ShengjuChen完成签到 ,获得积分10
34秒前
36秒前
36秒前
zrs发布了新的文献求助10
37秒前
AYF完成签到,获得积分10
39秒前
闪闪完成签到,获得积分10
40秒前
秋子发布了新的文献求助10
41秒前
42秒前
寒舟饮完成签到,获得积分10
43秒前
孔绍君完成签到 ,获得积分10
43秒前
飘逸的易梦完成签到,获得积分10
44秒前
完美世界应助刀锋采纳,获得10
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339