结直肠癌
转录组
癌症研究
生物
细胞
癌症
计算生物学
细胞生物学
遗传学
基因
基因表达
作者
Can Chen,Yimin Cai,Wenlong Hu,Kai Tan,Zequn Lu,Xuanyu Zhu,Ziying Liu,Chunyi He,Guangping Xu,Ruizhe Zhang,Caibo Ning,Shuheng Ruan,Jiayan Gao,Xiaojun Yang,Yongchang Wei,Xu Zhu,Xiangpan Li,Faxi Wang,Fubing Wang,Jiaoyuan Li
出处
期刊:Cancer Discovery
[American Association for Cancer Research]
日期:2025-03-03
被引量:3
标识
DOI:10.1158/2159-8290.cd-24-1561
摘要
Abstract Colorectal cancer (CRC) is a heterogeneous disease that develops through a stepwise accumulation, yet the underlying mechanisms at single-cell resolution remain unclear. Here, we profiled 751,531 single-cell transcriptomes, spatial transcriptomics, and snMultiomes from 142 multistage samples, revealing the cellular and molecular alterations and dynamic intercellular crosstalk during CRC development. Additionally, we created a CRC sc-eQTL map identifying 16,833 significant pairs across 28 cell subtypes, with over 76% of sc-eQTLs being cell-type-specific and fewer than 15% detectable in bulk datasets. A polygenic risk score (PRS) derived from sc-eQTLs substantially improved CRC risk prediction. We prioritized rs4794979 that is associated with an increased CRC risk (OR=1.11, P=2.04×10-12) by promoting LGALS9 expression mediated by ELK1. Elevated LGALS9 in epithelia interacts with SLC1A5 on fibroblasts, promoting transformation into cancer-associated fibroblasts (CAFs), simultaneously induces CD8+ T cells exhaustion via LGALS9-TIM3 axis, thereby facilitating CRC development. Blocking LGALS9-TIM3 axis enhanced anti-PD-1 therapy to inhibit CRC progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI