A semi-supervised prototypical network with dual correction for few-shot cross-machine fault diagnosis

对偶(语法数字) 计算机科学 弹丸 断层(地质) 一次性 人工智能 机器学习 模式识别(心理学) 算法 机械工程 材料科学 地质学 工程类 哲学 语言学 地震学 冶金
作者
Guozhen Liu,Kairong Gu,Haifeng Jiang,Jianhua Zhong,Jianfeng Zhong
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc7d0
摘要

Abstract Meta-learning has been widely applied and achieved certain results in few-shot cross-domain fault diagnosis due to its powerful generalization and robustness. However, existing meta-learning methods mainly focus on cross-domain fault diagnosis within the same machine, ignoring the fact that there are more significant domain distribution differences and sample imbalance problems between different machines, leading to poor diagnostic performance. To address these issues, this paper proposes a semi-supervised prototypical network with dual correction (SPNDC). First, a dual-channel residual network is utilized to comprehensively extract sample features, capturing both deep and shallow information. Then, correct the semi-supervised prototypical network by weighting the features and adding a shift term on support set samples and query set samples, respectively, to diminish its intra-class bias and extra-class bias. Meanwhile, a regularization term is introduced into the model to balance the distribution among different class prototypes, enhancing distinctiveness. Finally, few-shot cross-machine fault diagnosis experiments are conducted on three different datasets to validate the effectiveness of the method. Additionally, an interpretability analysis of the model is conducted using the gradient-weighted class activation mapping (Grad-CAM) technique to discern its primary regions of focus in the classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助kk采纳,获得10
2秒前
2秒前
2秒前
开朗的山彤应助mjicm采纳,获得50
2秒前
南风完成签到,获得积分10
2秒前
情怀应助热情的书南采纳,获得10
3秒前
3秒前
3秒前
4秒前
科研通AI5应助宋宋采纳,获得30
5秒前
不安夜天发布了新的文献求助10
5秒前
望阳天完成签到,获得积分20
6秒前
6秒前
小马哥发布了新的文献求助10
6秒前
清风醉完成签到,获得积分10
6秒前
6秒前
CodeCraft应助savesunshine1022采纳,获得10
7秒前
今后应助惊天大幂幂采纳,获得10
7秒前
天天快乐应助ZZZ采纳,获得10
8秒前
赵云发布了新的文献求助10
8秒前
8秒前
齐嘉懿发布了新的文献求助10
9秒前
10秒前
SS2D发布了新的文献求助10
10秒前
12秒前
不安夜天完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
浆糊完成签到,获得积分10
14秒前
14秒前
顾矜应助初遇之时最暖采纳,获得10
14秒前
cc完成签到,获得积分10
14秒前
14秒前
15秒前
核桃发布了新的文献求助10
15秒前
15秒前
15秒前
小马哥发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478537
求助须知:如何正确求助?哪些是违规求助? 3936102
关于积分的说明 12211349
捐赠科研通 3590703
什么是DOI,文献DOI怎么找? 1974488
邀请新用户注册赠送积分活动 1011737
科研通“疑难数据库(出版商)”最低求助积分说明 905211