A semi-supervised prototypical network with dual correction for few-shot cross-machine fault diagnosis

对偶(语法数字) 计算机科学 弹丸 断层(地质) 一次性 人工智能 机器学习 模式识别(心理学) 算法 机械工程 材料科学 地质学 工程类 哲学 语言学 地震学 冶金
作者
Guozhen Liu,Kairong Gu,Haifeng Jiang,Jianhua Zhong,Jianfeng Zhong
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc7d0
摘要

Abstract Meta-learning has been widely applied and achieved certain results in few-shot cross-domain fault diagnosis due to its powerful generalization and robustness. However, existing meta-learning methods mainly focus on cross-domain fault diagnosis within the same machine, ignoring the fact that there are more significant domain distribution differences and sample imbalance problems between different machines, leading to poor diagnostic performance. To address these issues, this paper proposes a semi-supervised prototypical network with dual correction (SPNDC). First, a dual-channel residual network is utilized to comprehensively extract sample features, capturing both deep and shallow information. Then, correct the semi-supervised prototypical network by weighting the features and adding a shift term on support set samples and query set samples, respectively, to diminish its intra-class bias and extra-class bias. Meanwhile, a regularization term is introduced into the model to balance the distribution among different class prototypes, enhancing distinctiveness. Finally, few-shot cross-machine fault diagnosis experiments are conducted on three different datasets to validate the effectiveness of the method. Additionally, an interpretability analysis of the model is conducted using the gradient-weighted class activation mapping (Grad-CAM) technique to discern its primary regions of focus in the classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CC发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
搜集达人应助一包辣条采纳,获得10
2秒前
顾矜应助飘逸的吐司采纳,获得10
2秒前
3秒前
3秒前
蒋依伶发布了新的文献求助10
3秒前
忠诚的谢夫涅完成签到,获得积分10
3秒前
共产主义战士完成签到,获得积分10
4秒前
坚强冰蝶发布了新的文献求助10
4秒前
peggypan108发布了新的文献求助10
5秒前
隐形曼青应助Tina采纳,获得10
5秒前
搜集达人应助ZWZ采纳,获得10
5秒前
大米完成签到,获得积分10
5秒前
Keep发布了新的文献求助10
6秒前
lalala发布了新的文献求助10
6秒前
甜甜的半仙完成签到,获得积分10
6秒前
6秒前
科研通AI5应助DQQ采纳,获得10
7秒前
奋斗藏花完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
深情安青应助三土采纳,获得10
8秒前
博修发布了新的文献求助10
8秒前
miemiemie94关注了科研通微信公众号
8秒前
Zbzb发布了新的文献求助10
8秒前
9秒前
qausyh完成签到,获得积分10
9秒前
背后的小白菜完成签到,获得积分10
10秒前
胡不归完成签到,获得积分10
10秒前
科研通AI5应助秋子采纳,获得10
11秒前
11秒前
玩命的友安完成签到,获得积分10
12秒前
yj完成签到 ,获得积分10
12秒前
xiangxl完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804725
求助须知:如何正确求助?哪些是违规求助? 3349592
关于积分的说明 10345510
捐赠科研通 3065684
什么是DOI,文献DOI怎么找? 1683244
邀请新用户注册赠送积分活动 808762
科研通“疑难数据库(出版商)”最低求助积分说明 764734