Hepatocellular carcinoma 18F‐FDG PET/CT kinetic parameter estimation based on the advantage actor‐critic algorithm

算法 正电子发射断层摄影术 核医学 动能 物理 数学 计算机科学 医学 量子力学
作者
Jia He,Siming Li,Yiwei Xiong,Yao Yu,Siyu Wang,Sidan Wang,Shaobo Wang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17851
摘要

Abstract Background Kinetic parameters estimated with dynamic 18 F‐fluorodeoxyglucose ( 18 F‐FDG) positron emission tomography (PET)/computed tomography (CT) help characterize hepatocellular carcinoma (HCC), and deep reinforcement learning (DRL) can improve kinetic parameter estimation. Purpose The advantage actor‐critic (A2C) algorithm is a DRL algorithm with neural networks that seek the optimal parameters. The aim of this study was to preliminarily assess the role of the A2C algorithm in estimating the kinetic parameters of 18 F‐FDG PET/CT in patients with HCC. Materials and Methods 18 F‐FDG PET data from 14 liver tissues and 17 HCC tumors obtained via a previously developed, abbreviated acquisition protocol (5‐min dynamic PET/CT imaging supplemented with 1‐min static imaging at 60 min) were prospectively collected. The A2C algorithm was used to estimate kinetic parameters with a reversible double‐input, three‐compartment model, and the results were compared with those of the conventional nonlinear least squares (NLLS) algorithm. Fitting errors were compared via the root‐mean‐square errors (RMSEs) of the time activity curves (TACs). Results Significant differences in K 1 , k 2 , k 3 , k 4 , f a , and v b according to the A2C algorithm and k 3 , f a , and v b according to the NLLS algorithm were detected between HCC and normal liver tissues (all p < 0.05). Furthermore, A2C demonstrated superior diagnostic performance over NLLS in terms of k 3 and v b (both p < 0.05 in the Delong test). Notably, A2C yielded a smaller fitting error for normal liver tissue (0.62 ± 0.24 vs. 1.04 ± 1.00) and HCC tissue (1.40 ± 0.42 vs. 1.51 ± 0.97) than did NLLS. Conclusions Compared with the conventional postreconstruction NLLS method, the A2C algorithm can more precisely estimate 18 F‐FDG kinetic parameters with a reversible double‐input, three‐compartment model for HCC tumors, attaining better TAC fitting with a lower RMSE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
Java完成签到,获得积分10
1秒前
富贵儿完成签到 ,获得积分10
3秒前
fengzi完成签到 ,获得积分10
4秒前
波西米亚完成签到,获得积分10
6秒前
张小度ever完成签到 ,获得积分10
7秒前
乐正熠彤完成签到,获得积分10
8秒前
惊天大幂幂完成签到,获得积分10
10秒前
小杨完成签到,获得积分10
11秒前
CHSLN完成签到 ,获得积分10
12秒前
tongkaibing完成签到,获得积分10
13秒前
斯寜应助13313采纳,获得10
17秒前
zz完成签到,获得积分10
17秒前
天真醉波完成签到 ,获得积分10
18秒前
退役干饭王完成签到 ,获得积分20
19秒前
Eins完成签到 ,获得积分10
22秒前
25秒前
科研通AI5应助马马马采纳,获得10
26秒前
橙子完成签到 ,获得积分10
26秒前
blueblue完成签到,获得积分10
26秒前
我不是学术渣完成签到,获得积分10
29秒前
研友_nqrKQZ完成签到 ,获得积分10
29秒前
lzp发布了新的文献求助10
30秒前
默存完成签到,获得积分10
31秒前
ZW完成签到 ,获得积分10
32秒前
miaomiao完成签到 ,获得积分10
32秒前
chen完成签到,获得积分10
33秒前
37秒前
我想静静完成签到 ,获得积分10
38秒前
39秒前
Jasper应助lzp采纳,获得10
40秒前
咸鱼已躺平完成签到,获得积分10
40秒前
火星上小土豆完成签到 ,获得积分10
42秒前
42秒前
黑布林大李子完成签到,获得积分0
44秒前
安静严青完成签到 ,获得积分10
46秒前
BOLIN完成签到,获得积分10
48秒前
玖月完成签到 ,获得积分10
54秒前
马马马完成签到,获得积分10
54秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843295
求助须知:如何正确求助?哪些是违规求助? 3385613
关于积分的说明 10540874
捐赠科研通 3106195
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308