A Gravity-informed Spatiotemporal Transformer for Human Activity Intensity Prediction

作者
Yi Wang,Zhenghong Wang,Fan Zhang,Chaogui Kang,Shuzhou Ruan,Di Zhu,C. J. Tang,Zhiyao Ma,Weiyu Zhang,Yu Zheng,Philip S. Yu,Yu Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2025.3625859
摘要

Human activity intensity prediction is crucial to many location-based services. Despite tremendous progress in modeling dynamics of human activity, most existing methods overlook physical constraints of spatial interaction, leading to uninterpretable spatial correlations and over-smoothing phenomenon. To address these limitations, this work proposes a physics-informed deep learning framework, namely Gravity-informed Spatiotemporal Transformer (Gravityformer) by integrating the universal law of gravitation to refine transformer attention. Specifically, it (1) estimates two spatially explicit mass parameters based on spatiotemporal embedding feature, (2) models the spatial interaction in end-to-end neural network using proposed adaptive gravity model to learn the physical constraint, and (3) utilizes the learned spatial interaction to guide and mitigate the over-smoothing phenomenon in transformer attention. Moreover, a parallel spatiotemporal graph convolution transformer is proposed for achieving a balance between coupled spatial and temporal learning. Systematic experiments on six real-world large-scale activity datasets demonstrate the quantitative and qualitative superiority of our model over state-of-the-art benchmarks. Additionally, the learned gravity attention matrix can be not only disentangled and interpreted based on geographical laws, but also improved the generalization in zero-shot cross-region inference. This work provides a novel insight into integrating physical laws with deep learning for spatiotemporal prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曹开摆了发布了新的文献求助150
刚刚
1秒前
1秒前
tejing1158发布了新的文献求助10
1秒前
1秒前
linghanlan完成签到,获得积分10
2秒前
Lny应助牧羊人采纳,获得30
2秒前
Zshen完成签到 ,获得积分10
3秒前
bkagyin应助羞涩的丹云采纳,获得10
3秒前
3秒前
叁金完成签到,获得积分10
4秒前
4秒前
星星发布了新的文献求助10
4秒前
CodeCraft应助wanglan采纳,获得10
6秒前
6秒前
诚心靳完成签到,获得积分10
6秒前
柏小霜发布了新的文献求助10
7秒前
热心采白发布了新的文献求助10
7秒前
7秒前
感谢快乐小猴转发科研通微信,获得积分50
8秒前
量子星尘发布了新的文献求助10
9秒前
感谢hehe转发科研通微信,获得积分50
9秒前
9秒前
10秒前
bkagyin应助coral采纳,获得10
10秒前
Jsihao发布了新的文献求助10
10秒前
思源应助要减肥采纳,获得10
10秒前
感谢等待书双转发科研通微信,获得积分50
11秒前
whl发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
球状闪电完成签到,获得积分10
13秒前
乐观依云完成签到,获得积分10
13秒前
忆_完成签到 ,获得积分10
13秒前
14秒前
感谢优美凡白转发科研通微信,获得积分50
14秒前
14秒前
感谢LIZ转发科研通微信,获得积分50
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959