Systematic Review of Radiomics Applications in Small Cell Lung Cancer: Insights from Bibliometric Analysis and Research Frontiers

作者
Ke Zhang,Y. Zhang,Min Tan,Fajin Lv
出处
期刊:Current Respiratory Medicine Reviews [Bentham Science]
卷期号:22
标识
DOI:10.2174/011573398x415236251126075039
摘要

Background: Radiomics has shown significant promise in Small Cell Lung Cancer (SCLC) research, yet trends and hotspots remain unclear. This bibliometric analysis identifies future research directions. Method: Publications on radiomics in SCLC (2000-2025) were retrieved from Web of Science Core Collection. Bibliometrix, CiteSpace, and VOSviewer analyzed countries, institutions, authors, journals, keywords, and references. Results: Analysis of 725 articles revealed marked growth over the past decade. China and the USA were the leading contributors. Institutionally, the University of Texas System was the top contributor, while Shanghai Jiao Tong University led in collaborations. Dekker Andre was the most published author. Frontiers in Oncology published the most articles; Magnetic Resonance Imaging was the most cited. Hotspots identified through keyword and co-citation analysis include radiomics, machine learning, feature selection, survival prediction, and tumor microenvironment. Discussion: SCLC has the characteristics of strong invasiveness and poor prognosis. Radiomics uses artificial intelligence for preoperative diagnosis, efficacy assessment, prognosis prediction, and genotyping. Currently facing challenges such as sample scarcity, data heterogeneity, insufficient model generalization, and a lack of clinical translation standards. In the future, we need to focus on multimodal image fusion, deep feature mining for machine learning, gene regulatory network analysis, multi-center verification, and unified clinical standards. This study is limited to WoSCC English data, software analysis bias, and timeliness, and needs to be optimized later. Conclusion: Radiomics enables early SCLC detection through integrative image-feature analysis. AI-assisted imaging diagnosis, personalized treatment, and prognostic prediction hold significant potential to enhance progression prediction accuracy and advance novel therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的雪旋完成签到 ,获得积分10
1秒前
聪明的二休完成签到,获得积分20
1秒前
明理的亦寒完成签到 ,获得积分10
2秒前
MADAO完成签到 ,获得积分10
3秒前
顾矜应助猪猪hero采纳,获得10
4秒前
5秒前
汉堡包应助聪明的二休采纳,获得10
6秒前
上善若水完成签到,获得积分10
7秒前
墨鱼完成签到 ,获得积分10
9秒前
迷了路的猫完成签到,获得积分10
9秒前
袁青欣完成签到 ,获得积分10
10秒前
长情的芝麻完成签到 ,获得积分10
10秒前
不弱小妖完成签到,获得积分10
12秒前
张章完成签到,获得积分10
12秒前
安然完成签到 ,获得积分10
13秒前
starwan完成签到 ,获得积分10
14秒前
柚又完成签到 ,获得积分10
15秒前
尛森发布了新的文献求助10
15秒前
16秒前
魔山西红柿完成签到,获得积分10
17秒前
小王啵啵完成签到 ,获得积分10
17秒前
Dobby完成签到 ,获得积分10
18秒前
快乐疯样完成签到,获得积分10
18秒前
孙友浩完成签到,获得积分10
19秒前
brodie完成签到,获得积分10
19秒前
淘宝叮咚完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
彩色布条发布了新的文献求助10
21秒前
卜哥完成签到 ,获得积分10
22秒前
licheng完成签到,获得积分10
22秒前
善良的小白菜完成签到,获得积分10
23秒前
月星发布了新的文献求助10
24秒前
求助人员发布了新的文献求助10
28秒前
HH完成签到 ,获得积分10
29秒前
drbrianlau完成签到,获得积分10
33秒前
L7.完成签到,获得积分10
35秒前
认真科研完成签到,获得积分10
35秒前
hanliulaixi完成签到,获得积分10
35秒前
盼盼完成签到,获得积分10
37秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599949
求助须知:如何正确求助?哪些是违规求助? 4685756
关于积分的说明 14839094
捐赠科研通 4674348
什么是DOI,文献DOI怎么找? 2538438
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086