A diffusion model for hyperspectral and multispectral fusion guided by prior knowledge

作者
Yujie Wu,Jiguang Dai,Zheng Ma,Tengda Zhang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:144: 104923-104923
标识
DOI:10.1016/j.jag.2025.104923
摘要

Fusing LRHSI with HRMSI is a widely used strategy to generate HRHSI. Diffusion models, which progressively denoise input data, effectively capture both global structures and fine details, offering flexible modeling of complex spectral-spatial relationships. These models have shown strong generative capabilities for hyperspectral-multispectral image (HSI-MSI) fusion, with promising application potential. However, two main challenges persist: (1) insufficient guidance from physical priors during residual generation, leading to spectral and structural distortions; and (2) the simplistic injection of HRMSI as an auxiliary condition into the denoising network results in weak interaction between high- and low-frequency spatial features of HRMSI and LRHSI. In response to these challenges, our proposed Prior-Guided Fusion Diffusion Network (PG-FDN) enables HSI-MSI fusion. PG-FDN integrates a Prior-Guided Gradient Mechanism (PGGM) and a denoising model. PGGM embeds spectral-frequency priors into the gradient update process, guiding residual generation to reduce spectral distortion and preserve local textures. Additionally, the denoising model adopts a Bidirectional Progressive Decoder (BPD), which enables hierarchical integration of HRMSI spatial features via forward–backward feature interaction. Using two synthetic and three real-world datasets, experiments reveal that PG-FDN outperforms six representative methods. Component-wise ablation analyses validate the individual contribution of each module, and cross-domain evaluations further confirm its robustness and adaptability. Code and dataset link: https://github.com/xiaotaiyang-ops/fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
carol7298完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助Ruby-Geo采纳,获得10
1秒前
NexusExplorer应助BPM采纳,获得10
2秒前
2秒前
2秒前
求助人员应助zorro3574采纳,获得10
2秒前
2秒前
3秒前
3秒前
星期日发布了新的文献求助10
4秒前
Liang发布了新的文献求助30
4秒前
4秒前
含蓄可冥完成签到,获得积分10
4秒前
我是一只小木虫完成签到,获得积分20
5秒前
5秒前
6秒前
李健应助PAPA采纳,获得10
6秒前
6秒前
传奇3应助Sissi采纳,获得10
7秒前
7秒前
xh发布了新的文献求助10
7秒前
7秒前
8秒前
Xing发布了新的文献求助10
8秒前
zoushiyi完成签到,获得积分20
9秒前
10秒前
可爱的函函应助星空物语采纳,获得10
10秒前
10秒前
LSM发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
doctor发布了新的文献求助10
12秒前
传奇3应助msw采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519788
求助须知:如何正确求助?哪些是违规求助? 4611783
关于积分的说明 14530363
捐赠科研通 4549191
什么是DOI,文献DOI怎么找? 2492885
邀请新用户注册赠送积分活动 1473959
关于科研通互助平台的介绍 1445766