Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth

医学 机器学习 病历 怀孕 人工智能 队列 胎龄 产科 计算机科学 内科学 遗传学 生物
作者
Abin Abraham,Brian L. Le,Idit Kosti,Péter Straub,Digna Velez-Edwards,Lea K. Davis,J.M. Newton,Louis J. Muglia,Antonis Rokas,Cosmin A. Bejan,Marina Sirota,John A. Capra
出处
期刊:BMC Medicine [BioMed Central]
卷期号:20 (1) 被引量:25
标识
DOI:10.1186/s12916-022-02522-x
摘要

Abstract Background Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortality, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict preterm birth risk. The dense longitudinal information present in electronic health records (EHRs) is enabling scalable and cost-efficient risk modeling of many diseases, but EHR resources have been largely untapped in the study of pregnancy. Methods Here, we apply machine learning to diverse data from EHRs with 35,282 deliveries to predict singleton preterm birth. Results We find that machine learning models based on billing codes alone can predict preterm birth risk at various gestational ages (e.g., ROC-AUC = 0.75, PR-AUC = 0.40 at 28 weeks of gestation) and outperform comparable models trained using known risk factors (e.g., ROC-AUC = 0.65, PR-AUC = 0.25 at 28 weeks). Examining the patterns learned by the model reveals it stratifies deliveries into interpretable groups, including high-risk preterm birth subtypes enriched for distinct comorbidities. Our machine learning approach also predicts preterm birth subtypes (spontaneous vs. indicated), mode of delivery, and recurrent preterm birth. Finally, we demonstrate the portability of our approach by showing that the prediction models maintain their accuracy on a large, independent cohort (5978 deliveries) from a different healthcare system. Conclusions By leveraging rich phenotypic and genetic features derived from EHRs, we suggest that machine learning algorithms have great potential to improve medical care during pregnancy. However, further work is needed before these models can be applied in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助蓝梦一刀采纳,获得10
刚刚
刚刚
刚刚
852应助wsh采纳,获得10
2秒前
星辰大海应助星睿采纳,获得10
2秒前
李健的小迷弟应助xiao采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
zhaosiqi发布了新的文献求助10
4秒前
冷酷豌豆完成签到,获得积分10
5秒前
Ava应助茶柠采纳,获得10
5秒前
idiot发布了新的文献求助10
5秒前
飘逸初夏完成签到,获得积分20
6秒前
6秒前
zzz发布了新的文献求助10
6秒前
6秒前
斯文败类应助谨慎含双采纳,获得10
7秒前
8秒前
piers应助chen采纳,获得10
8秒前
8秒前
北沐城歌应助小小采纳,获得10
9秒前
9秒前
弩弩hannah完成签到,获得积分10
9秒前
9秒前
10秒前
酷酷友容应助巫马尔槐采纳,获得10
10秒前
星睿发布了新的文献求助10
11秒前
11秒前
accepted完成签到,获得积分10
11秒前
11秒前
12秒前
Grace发布了新的文献求助10
12秒前
乐观元风发布了新的文献求助10
12秒前
13秒前
一只大圆脸完成签到,获得积分10
13秒前
caixiayin发布了新的文献求助10
14秒前
Akim应助犹豫的碧灵采纳,获得10
14秒前
弩弩hannah发布了新的文献求助10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120154
求助须知:如何正确求助?哪些是违规求助? 3658578
关于积分的说明 11581389
捐赠科研通 3360181
什么是DOI,文献DOI怎么找? 1846199
邀请新用户注册赠送积分活动 911112
科研通“疑难数据库(出版商)”最低求助积分说明 827310